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1. INTRODUCTION

This thesis deals with detection and estimation using spatially separated sensors.

A typical practical situation is a surveillance system [1] in which a large number of

sensors monitor some region of space, earth or sea and report their findings to a global

processor. The sensors themselves may use thermal, acoustic or infrared effects to form

their observations. The global processor performs some processing on the data to come

with a decision or for taking actions. Because of many considerations such as

bandwidth communication limitations, time delay or because the amount of

information is too massive to be processed by a single processor, the processing is

carried out on many levels. As an example consider the case of distributed detection.

Detection is performed at the sensor level and at the fusion center.

Due to the loss of information in the local processing, the overall performance

* degrades. However a great communication bandwidth reduction results. If the

communication channels can support more information flow, then it is wise to perform

* 'softer" processing at the local level, to send more information to the fusion center, and

to use the information available there effectively.

The purpose of this chapter is to define the Distributed Signal Processing (DSP)

problem in general and to show some reasons and situations in which it replaces

Centralized Signal Processing (CSP) techniques. We then will review the status of the

research on Decentralized Detection (DD) problem, one of the basic problems of DSP.

Finally the contributions and organization of this thesis are described.

A. OVERVIEW

Classical (Centralized) Signal Processing (CSP) assumes complete availability of

all information (signals) at one central processor for processing (decision making.

computing, detection, estimation, etc ... ). While this situation is realistic in some cases,

many real world systems are too large for the classical processing to be practically

applied. Power systems, detection networks, large manufacturing systems and military

oreanizations are among those systems in which total centralized signal processing is
hard to apply. Some of the reasons and considerations for the limations of CSP are

[2,3]:

15
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• I. In large systems, each processor has partial information of some credibility.
While total information is distributed in the whole system, total centeralization
of the information at one processor is impractical, inconvenient or expensive
due to limitations in the system's communication channels, memory or
computation and information capabilities.

2. In some cases, processing speed is a bottleneck. Increasing local processing of
the data at each processor and sending processed data to the next level of
processors will help re!icve the problem.

3. When reliability of the system is of major concern, distributed processing may
better tolerate various kinds of equipment failures. Less complex centralized
processing is more easily shifted to a new location.

4. In cases when security is a major problem, increasing local processing will
decrease the information handled between the processors, so limit any other
system's access to the process.

5. As the cost of computation has decreased dramatically relative to the cost of
communication, it is advantageous to trade off increased computation for
reduced communication. So in Distributed Sensor Networks (DSN) involving

* geographically distributed sensors that collect data, it may be more economical
to locally process the data and send condensed summaries to other processors.

* Distributed Signal Processing (DSP), in contrast to CSP, has several processors

. that cooperate together to best achieve a global task according to some criterion. A

basic problem in DSP, which has attracted much attention recently, is the

Decentralized Detection (DD) problem (hypothesis testing). The DD problem will be

a major concern in this thesis. A summary of its status is given in the following section.

B. MOTIVATION

There has been an increased interest in the DD problem since Tenney and

Sandell introduced it in 1981 [5]. They extended the classical Bayesian formulation of

the detection problem to distributed environments. Because their work was the

pioneering one in DD and because we will refer to it often in this thesis , let us

consider it now in some detail together with the Centralized Detection (CD) problem.

* Also, because detection is dealt with throughout a large portion of this thesis, we will
Zwl make some remarks about the phenomena to be detected and about detection criterion.

The Phenomena

Consider observing a phenomena H of M possible states in order to determine

0. which of them is true. For M = 2, the state H0 is called the null hypothesis and H

the alternative hypothesis. Their probabilities of occurrence

P(Ho )-- Po P(H )= P (1.1)
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are assumed to be known.

The Sensor Observations

The phenomena H is observed by N sensors SI,S 2,...,SN The sensor

observations are y1,y2 , .... 'YN The sensor observations have known conditional
distributions

p(yIY 2 ....,YN/Ho), p(yiY2,...,y N /11). (1.2)

Detection Criterion

The function of the detection process is to make a decision, U0 , about which
state of the phenomena is true. The optimality criterion is a function

J: U0 xH-.M, (1.3)

" that assigns to the event of deciding ui when H* is true a real number Cij, i,j=0,1.

* called the detection cost, so

J(U 0 = ui H = Hj)= Ci. (1.4)

The objective of the decision rule will be to minimize the expected decision cost

min E{J(u,H)). (1.5)

An important ratio in our analysis is the constant given by

C = PO (C1o'Coo) (!.6)

P1 (CoC'C11)

Van Trees [61 showed that the average decision cost is given by,

R =Coo PO +C01 PI +Po (COI "CII ) Pf-P (COI -CII )Pd (1.7)
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where P, and Pd are the probability of false alarmI and probability of detection 2

respectively. At this point we will make the assumptions that

Col > C ,11  (1.8)

and

CI0 > C00, (1.9)

These assumptions implies that it is more costly to err than to make a correct decision.

Equation (1.7) can then be written in the form:

R= Con PO + C0 1 P + P0 (CIO -coo )
P1 ( C P1 P P1 (C0 1 

(CC
1 ) "

. (1.10)

* Ignoring positive constants that will not affect our analysis, the average decision cost

R is given by

.PfQ d

R = 1 + C P (.11)

1. The Centralized Detection (CD) Problem

The problem of centralized binary hypothesis testing can be posed in its most

general form as follows. For the structure of Figure 1.1 it is assumed that all sensor
observations can be sent to one (central) location for processing. The function of the

processor is to map the vector Y= [ y Y2 ... yx ]t into the decision space U&subo(0,1)

U"Lo: Y -- (0, 1) (1.12)

as follows;

= f 0, H0 is declared to have been detected! 0 .U o  0 (1.13)
1, H is declared to have been detected.

'Probability of deciding U0 = 0 while I 1 is true
2 Probability of deciding Uo.= I while H, is true

Is
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1 y2/ s2

si

y1  y2

Central

Processor

Figure 1.1 Centralized Detection.
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Solution of the CD Problem

The solution to the CD problem is [6]

a) deterministic, so that the decision rule is a function of the observations

7: Y1 xY2 X...XYN -+ (0,1), (1.14)

b) a likelihood ratio test,

Uo(y1 ,y 2, YN)= 0, ifA (YY 2 .. 'YN ) t (1.15)
1, if A (ypy 2 ,...,yN) < t

where

-,". ~~A (y 1 y2 .... 'YN)= " ",(.6
, A yl,Y2 ,...,y\'N 1140)

c) and the threshold t is given by

t = C. (1.17)

2. The Decentralized Detection (DD) Problem with Fusion

Consider the structure of Figure 1.2 with H and Y being as before; the

decisions U1 ,U2 ,... and U. are sent to a fusion center. The activity of the fusion

center is to make the global decision Uo according to some preset fusion rule.

U xU (1.18)

In the DD problem with fusion it is required to design local decision rules U,U 2....

and UN and a global fusion rule (1.18) so as to minimize the expected cost E{J(U o ,H))K incurred by deciding U0 = i when Hi is true.

Choosing an AND fusion rule apriori, Tenney and Sandell solved this problem

Slk" for N= 2. They set the decision rule as Uo =U U2 and optimized the local decision

rules.

20
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y1  y2
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Ul u2

Fusion

Center

0U

Figeure 1.2 Decentralized L z;ection with Fusion.
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Solution of DD Problem with Fusion

The solution to the DD problem with fusion is
1. deterministic

Y, -+ (0,1) (1.19)

and

7 2 : Y2 -
+ (0,1) (1.20)

2. a likelihood ratio test for each detector

Ui 0, ifij (Yi) > ti (.1
1, if Ai (Yi)< ti

6 where

Ai (V.) _ f(Y "I ) (1.22)
ffyi /Ho )

3. with coupled thresholds tI and t2 given by

tr C F/Y (1.23)
Pr(D2 ,'Yl )

and

C2  Pr(FI /Y2 (1.24)
Pr(D 'Y2 )

where Pr(F. ,'y ) and Pr(D i /v. ) are respectively the conditional probability of
false alarm and the conditional probability of detection of the i detector given
the ith detector's observation.

22
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Equations (1.23 ) and (1.24 ) are two coupled functional equations in ti and t2 . For
general distributions, a functional expression for each of them in terms of its own
observation and the other detector's decision is impossible. We shall consider the
complexity of these decision rules later. A special case of the DD problem is the case

of conditionally independent sensor observations, i.e.

fly1/y2 ,H)= fy 1 /H) (1.25)

and

f(Y2 /Y1 ,H) = fly2 /H). (1.26)

In this case, the conditional probabilities in (1.23) and (1.24) reduce to

ti = C Pf2 (1.27)
* •Pd2

and

t2'= t Pt- (1.28): ::Q Pd I

Equations (1.27) and (1.28) are two coupled algebraic equations in the form of

t, =0 1 (t2 ) and t2  92 (t) (1.29)

since P. and Pdi depend on ti . This coupling represents cooperation between the two
* sensors. The threshold equations are necessary conditions for optimality. There may

be several local minima; each must be checked to assure the global minima. The
threshold equations are strongly coupled for general cost assumptions.

Tenney and Sandell came to the following conclusions:
S.1. Increasing the signal-to-noise ratio improves the performance of the system.

However a centralized system makes more efficient use of the increased
information.
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2. As the imbalance between the two detectors increases the performance
improves. If the signal-to-noise ratio of one of the detectors goes to zero then
the system decision is that of the other detector. This is equivalent to the
performance of a CD system of the same signal-to-noise ratio.

The case of conditionally independent observations has been considered by

many authors. Sarma and Rao [71 extended Tenney and Sandell's results to the case of

three sensors. They assumed a majority logic fusion rule and evaluated the threshold

settings for some specific cases. Chair and Varshney [81 considered the problem of

optimal fusion of N local decisions from prespecified local decision rules. Their

optimum fusion structure is a weighted sum of local decisions according to their

reliabilities. Reibman and Nolte [9] optimize both local decision rules and the fusion

rule under the assumption of identical local decision rules. The global decision is then k

out of N. They optimize the local decision rule for each k ,k= 1,2,...,N, then pick the

value of k corresponding to the minimum decision cost.
A . A sub-class of the DD problem with fusion, that will be referrd to as the

"Second Opinion" problem, is the fusion of one's observation with another's decisions.

7 An example of this is the second opinion in a medical examination, or even asking for

legal advise. Ekchian [10] and Ekchian and Tenney [11] consider some specific

... topologies of this problem. Each decision maker has to make his decision based on his
own observation and a predecessor's decisions. All the decision rules are likelihood

ratio tests using the actual data. The thresholds are determined by incoming

communication messages. The number of thresholds at each decision maker grows

exponentially with the number of message inputs. Their results suggest putting the

noisy sensor "up stream" in the detection network.

Papastavrou and Athans [12] also consider the second opinion problem.They

examine the structure of a primary decision maker, PDM, and a secondary decision

maker. SDM ( a consultant ). The PDM makes his decision based on his own

observation if it is of good quality. If his observation is noisy, the PDM asks, at a

. communication cost, the opinion of the SDM. Being activated by the request of the

PDM, the SDM sends his decision to the PDM or ignores the request if his

observation is noisy. In either case the PDM has to make a final decision. Again the

-'. thresholds are coupled. The threshold of the PDM is determined by the message of the

SDM.

This thesis is motivated mainly by three of the above works namely:

I. Bayesian formulation of the DD problem by Tenney and Sandell [5].
' .4 "

llJ.4

Si%-.



2. Extension of the DD problem to the Distributed Detection Networks by
Ekchian. [10]

3. Extention of the DD problem to the case of correlated sensor observations by
Lauer and Sandell [4].

C. THE COMPLEXITY OF THE DD PROBLEM

We saw that the DD problem can be solved optimally for conditionally

independent sensor observations. If this condition does not hold local decisions are not

likelihood ratio tests with constant thresholds. Tenney and Sandell show that for

conditionally dependent observations, local decision rules are likelihood ratio tests but

with data dependent thresholds (see e.g. (1.23 ) and (1.24 )). These two equations are

coupled. This means that the observation of one sensor is necessary for the other

sensor's decision, which contradicts the principle of decentralization. In terms of the

terminology of the Theory of Combinatorial Complexity [13], Tsitisiklis and Athans

[14] show that

1. The DD problem with independent observations is a polynomial time problem.

2. The DD problem with dependent sensor observations in its simplest form is a
0 nondeterministic polynomial NP-complete. This means that exhaustive

enumeration is necessary to find the optimum local decision rules. Optimality
may be an illusive goal. So, suboptimal solutions must be sought.

A suboptimal solution to the problem for the case of AND fusion was considered

by Lauer and Sandell [4]. They considered the case of known signals in correlated

noise They took as. a suboptimal solution local decision rules which are likelihood

tests but having constant, not data dependent, thresholds satisfying the necessary

condition of optimality. These thresholds are given by the implicit equations:

A, (T) C Pr(F, T, ) (1.30)

Pr(D 2 T, )

* and

Pr(F 1 T,)
A(T 2 )= C (1.31)

Pr(D1 ,T2 )

25

@% "1

.%



D. CONTRIBUTIONS OF THIS THESIS

We have reviewed the complexity of the DD problem and its current status. The

research reported here has significantly advanced this status in several important ways.

Specifically the contributions of this thesis have been to :

1. Answer the question of the optimum fusion rule at the fusion center for the
case of two sensors.

2. Specify the exact relation between the performance of the optimum fusion rule
and the correlation coefficient between sensor observations.

3. Solve the the second opinion decision problem.
4. Solve the multi-level DD problem with fusion; i.e. detection with quantized

sensor data for the known signal in noise case.

5. Introduce the minimum risk quantizer.

6. Grade the road between DD detection and CD detection.

7. Optimally design quantizers for minimum mean square estimation.

S. Present an efficient procedure to calculate parameters of a large variety of
quantizers.

E. ORGANIZATION OF THE THESIS

..- The thesis is organized as follows. In Chapter II we consider the problem of

fusion in DD. Optimum detection with quantized sensor data is considered in Chapter

Il, where the Quantized Detection algorithm, QD, is introduced. Numerical examples

to illustrate the algorithm are given in Chapter IV. Generalization to the case of vector

observations is presented in Chapter V. Optimum reg,.ieration of sensor observations

from their quantized versions and another sensor observation is considered in Chapter
VI. A summary of the thesis, conclusions and suggestions for future research are given

in Chapter VII. Proofs to some equations and FORTLAN programs to calculate

parameters of the minimum risk and the minimum distortion quantizers are given in

the appendices.
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II. OPTIMUM FUSION OF LOCAL DECISIONS

In this chapter the important question of the optimum fusion rule will be
answered. The relationship of the optimum fusion policy to the ratio of costs and the
correlation coefficient between observations is determined.

, A. INTRODUCTION

Distributed Detection with fusion is a two level optimization problem. The

k problem can be formulated in the following three ways:

I. Local Decision Optimization

_ The first way is to select the fusion rule apriori and optimize the local decision
rules accordingly. Setting the activity of the fusion center as AND fusion, Tenney and

2.- Sandell [5] derived optimum local decision rules for a pair of spatially separated
detectors with conditionally independent observations. They prove that local decision
rules are simple likelihood ratio tests with constant thresholds. The thresholds are the

solution of a pair of coupled algebraic equations that correspond to the global
* minimum of the detection cost function. They also show that for the case of correlated

observations local decision rules are likelihood ratio tests but with data dependent

thresholds. Functional solution of the threshold equations in the later case violates the
- principle of decentralization. Realizing the difficulty of the problem in the case of

correlated observations, Lauer and Sandell [4] designed suboptimal local decisions for
AND fusion. Their local decision rules are likelihood ratio tests with constant

thresholds satisfying the necessary conditions of optimality. Kovatana [15] considered

AND fusion for two detectors. Fefjar [16] compared AND to OR fusion for two
detectors. He claimed that OR is better than AND. Stearns [17] contradicts Feflar's

, results. He showed by an example that OR combining is better for higher cost of

missing the target while AND combining is better for higher cost of false alarms.

2. Fusion Rule Optimization
In the second formulation of the problem, local decision rules are set apriori.

Optimization is carried out with respect to the fusion rules. An example of this

situation could be factory built sensors that cannot be adjusted. Assuming local
threshold settings Chair and Varshney [81 prove that for the case of conditionally

independent sensor observations, the optimum fusion rule is a likelihood ratio test that
sums local decisions weighted according to their reliability.
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3. Global optimization of the Local decisions and the Fusion Rule

The third formulation involves optimization at both levels. Here local
decisions are optimized for every possible fusion rule. The optimum fusion rule is the

one that minimizes cost.

The main issue of this chapter is the global optimization of the DD system for

general correlated observations. First we will state the main results for the case of N

conditionally independent and identically distributed sensor observations. Then, the

problem of fusing two local decisions of sensors with correlated observations is

considered.

B. GLOBAL OPTIMIZATION OF DISTRIBUTED DETECTION
In CD all sensor observations are available at one central processor for detection.

The decision rule in CD is a likelihood ratio test in the observations yly 2,...,y . It

declares H1 is true if the likelihood ratio

A (y 1,y 2,...,y) > C (2.1)

, . otherwise it will declare H0 to be true.

In DD only local decisions are sent to the central processor ( fusion center). The

objective of the fusion center is to mix ( fuse ) the local decisions into a single global

decision with minimum decision cost. So given the local decisions the observation

space of the fusion center consists of 2N discrete points. The activity of the fusion

center is to divide this space into two decision regions Z0 and Z. The decision rule of
the fusion center is a likelihood ratio test [S.] The fusion center declares H1 is true if

A (ul,u,,...,u,.) > C. (2.2)

otherwise it will declare that H0 is true. In the special case of conditionallyS0
independent and identically distributed observations, the fusion rule is a k out of N

rule. Reibman and Nolte [91 considered this problem. Assuming the same decision rule

for every detector they optimize local decisions for every k. k= 1,2,....,N then pick the k
with the minimum decision cost.

If sensor observations are not conditionally independent, there is no guarantee

that local decisions are simple likelihood ratio tests. The problem turns out to be NP-
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complete which needs exhaustive enumerations to find the optimum decision rules [14.]
Moreover if sensor observations are not identically distributed, there are as many as

22N possible fusion rules for the N sensor decisions. Any algorithm that goes through
the entire fusion list optimizing local decisions will be impractical 3 for N > 6.

Our approach to avoid this exhaustive enumeration is the following:

1. We assume that local decisions are likelihood ratio tests with constant
thresholds. Again we emphasize that this assumption is valid only for

-- - conditionally independent observations, there is no guarantee that it is correct
for correlated observations [5]. So the constant threshold likelihood ratio test is
optimum for conditionally independent observations and perhaps suboptimum
for correlated observations. However the solution tends to the optimum
solution as the correlation coefficient tends to zero [4].

2. Those fusion rules which agree with the CD solution will be tested. The rest of
the fusion rules will be disregarded. The meaning of this will be made clear in
the following example.

Let us consider the case of two sensors (N = 2 ) in detail. To be explicit,
consider detection of known signals in gaussian noise. The sensor observations are

given by:

H0 : y. = ni , i= 1,2 (2.3)

and

HI: i =ai + ni , i= ,2. (2.4)

The a.'s are positive constants and N = [n1 n,]' is vector of zero mean with

covariance
V..: .

*'-' K=[ j(2.5)

.. where p is given by

e p E nn,}. (2.6)

3A computer that spends 1 11 second in every optimization process, will spend

40000 years to determine the optimum fusion rule, for N = 6.
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The threshold equation of the CD problem is given by [6],

(a, -p a2 )yj +(a 2 pa)y 2 - (a1
2 +a 2

2 -2p a1 a2 )/2 +(1-p 2 )log(C) (2.7)

which is a straight line in the y1 Y2 plane. Figure 2.1 shows decision rules based only

on D1 , only on D2 , both decision rules together, and the decision rule of CD.

The global optimization requires optimizing local decision rules for every fusion

rule then picking the fusion rule with minimum average cost. The observation space of

the fusion center consists of four discrete points (0,0), (0,1), (1,0), (1,1). Any fusion

rule divides this space into two decision regions Z1 and Z0. There are 24 -16 methods

to subdivide four points into two groups. Table I contains a list of those fusion rules.

Some special cases for the detection problem are as follows.

,' 1. If C -+ Go, i.e. the cost of missing the target is extremely high. the CD
solution assigns all the observation space to Zo. The fusion center can perform
the same. This is fusion rule one.

2. Similarly if C01  00 o, the fusion center will always decide H1 , this is fusion rule
*I two.

3. If a2 = p a,, the CD will decide based only on y,. So will the fusion center.
This is fusion rule three. This can only happen when a > a2.

4. If a1 = p a, the CD will decide based on y2. This is fusion rule four. This can
only happen when a2 > a, .

The first two situations represent extreme conditions of C. The next two conditions

deal with specific values of p. We also distinguish the following two cases.

Case a

-1 < p -< min( al ,a 2 ),,max( a1 ,a2 ).

In this case the y1 and y2 intersections of the threshold equation (2.7 ) are of the same

sign.

Case b

min( a l ,a2 )'max( a1 ,a2 ) < p < I.

In this case the Y and N2 intersections of the threshold equation are of diffierent signs.

We shall consider these intervals of p when we study the effect of correlation between

sensor observations.

The CD threshold in the Y y2 plane suggests assigning the decision point (0.0) to

Z and (1,1) to Z1. The fusion rules from 5 to 14 do not do this. They either assign

(0,0) to Z or assign (1,1) to Z or assign (0,0) and (1,I) to the same decision region.
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TABLE I

EXHAUSTIVE FUSION LIST OF TWO DECISIONS

Rule~ 4f Z, Comments

I ((0.,(0,).( ,).(I.I)T CID - 0

.. ,I(.).Io .o -. _ _. _ ) _ _

(O.O).(O.0) (0.0( 1 ) U. - U1

"" 6 (1.1)

1, [.) N

I" ( 1.1 ) (0I.(I0 .(.I

,

3 I (l .hUOll.I) (),.

•lI I0 0 . l'i n i II.)
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We will not consider these ten fusion rules further. The remaining two decision rules

are the AND fusion and the OR fusion. Let us now consider optimizing each of

them.

1. 'AND' Fusion

In AND fusion uo is given by:

u0 = uI u . (2.8)

The individual rules are given by assigning yi to Z, if

i a T. ,i= 1,2. (2.9)

I'.Otherwise they assign it to Z0.

The probability of detection Pd(AND) and probability of false alarm P$AND)

of the fusion center are given by:

000
P (AND)= f f Yly, "-I ) dY dY2 (2. 10)d 'T T2  12

and

Pf (AND)= JT1 fY'Y 2 "Ho) dYv dy, (2.11)

It has been shown in Chapter I that, to within positive multiplicative and

additive constants, the average decision cost is given by

SR = + C Pr- P d (2.12)

%- .', Substituting for Pd and P, in (2.12) from (2.10) and (2.11) expresses R(AND) as a

function of T and T The necessary conditions for optimality are

SRrT = 0 and 0 RT =0 (2.13)

,'.- which can be written in the forms:

'C,,.33
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C f(TI'Y2 H°) dY2 = II fT 1 'Y2 /H
1 

) dy2  (2.14)
2 2

Uand

,T f(y,,T, /H0 ) dy1 = ffY,,T2/HI ) dy1 . (2.15)

Applying Bayes rule and rearranging terms, one can write (2.14) and (2.15) as follows:

IT. ,~~J f(2TH,) dY,

A l (T 1 )= C - (2.16),X
f T:, tzTI ,H 1) dNv2T,

* and

00
"~" Tfl T, *Ho) dv1

k, (T,) C T (2.17)
5~T F~y T, 'H1 ) dYH

TI ) d

To insure minima the Hessian matrix of R with respect to T, and T,

(2.18)
p.

1• r&RT 2
"  a 2 R0T aT

--- 12 TR0T (2. 9)

must be positive definite. Optimum threshold settings T, and T, are the solution of

' (2.16) and (2.17) that corresponds to the global minima, so all possible solutions of

(2.16) and (2.17) must be tried. The coupling between (2.16) and (2 17) to determine

the thresholds represents the cooperation that can occur between the two local

detectors to minimize the overall decision cost.
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2. 'OR' Fusion

The decision of the OR fusion is given by

u0 = ut + u2 -u I u 2. (2.20)

The probability of detection Pd (OR) and probability of false alarm P, (OR) are given

by

Pd (OR)= 1 - .Y j2 f(YY2 'Hj )dy l dy2  (2.21)

and

Pf(OR)= 1- T  f(y1 ,y2 H0 ) dy1 dy2  (2.22)

while the necessary conditions for optimality are

T I f(y2 ,T ,Ho) dY2
A (Ti ) = C (2.23)

XTV
J 2 f(y2,'T1 ,H1 ) dY2

and

1 ffy 1'T Ho ) dyz= (T- (2.24)A(J2)  C "-

J f(yI"T2 ,HI) dy1

Again the Hessian matrix must be positive definite.

3. Solution of the Nonlinear Threshold Equations

The pair of coupled equations (2.16), (2.17) for the AND fusion and (2.23)
and (2.24) for the OR fusion can be solved using Maxs technique [181. The technique

35
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* is summarized as follow: pick a value of T1 and calculate T2 from (2.16) or (2.23 ). If

the calculated value of T2 does not agree with that value calculated from (2.17) or

(2.24) then T1 must be chosen again. This approach is time consuming. Another

approach is the method of successive substitution [19]. We first put the two equations

in the form

T G(T 1kT2) , 2 = F(Tk , (2.25)
" k+ I 'Tk+l k

then start with a reasonable guess for (T )0 and (T2 )0. A suitable initial guess is the

locally optimum solutions, i.e. the thresholds that would optimize the detection if each

sensor works alone. These will be denoted by T11 o and T21 . For known signals in

gaussian noise these are

(Ti) 0 =ai 2 + log(C) a. . (2.26)

0 4. Numerical Results

We have solved the threshold equations for both fusion rules for a, = 1.7 and

a.,-- 2.3 for several values of p And C.

To compare AND and OR fusion, define K as the ratio of the AND cost to

the OR cost.

K..J 1 - C P AND) - P (AND)(2.27)

I C Pf (OR) -Pd (OR)

We have also computed the Receiver Operating Characteristic4 (ROC) curves of

classical conmunication theory [201 fbr each fusion rule.

Figure 2.2 shows the ratio K as a function of C for p = 0, 0.2 0.4. The

figure shows that AND fusion is optimum for C >- I and OR fusion is optimum for

lower values of C. The same is clear from Figure 2.3; ROC curves of AND fusion are

above those of OR fusion for C Z I and lower otherwise. The performance difference

becomes smaller as the correlation coefficient increases. Also the figures show that the

performance degrades for both fusion rules as p tends to one. This is in sharp contrast

to CD which has perfect detection for p- I.

4P as a function of Pf
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The same effects can be concluded from Figure 2.4 and Figure 2.5. Figure 2.4

shows the ratio K as a function of C for a,= I and a2 =2 and for p = 0, 0.25, 0.5.

Figure 2.5 shows the ROC curves for both fusion rules for the same case. The figure

shows that AND fusion is optimum for C -> 1 and OR fusion is optimum for lower

values of C.

C. THE EFFECT OF CORRELATION BETWEEN SENSOR OBSERVATIONS

So far we have answered the question of the optimum fusion.rule. For C Z I
AND fusion is optimum. Let us now examine the effect of the correlation coefficient p

on the performance of AND fusion for C > I (its range of superiority). We assume

without loss of generality that a2 is greater than a1. The two necessary conditions for

optimality of AND fusion are (2.16) and (2.17). For the problem of known signal in

gaussian noise these can be written as:

erfe T, -p T,
A (T C (2.28)
1 T(, -a, -p (T i -a,

erfc. 211  T./(l-p2 )

and

T,. (-p T)
erfc { -

A2 (T 2  = C (2.29)

erc Ti -a, -p (T ., - ,)

Notice that C appears only as a multiplicative constant in the two equations. The role

* of p is not that obvious. Examining the two equations leads to the following insights

about the role of p:

I. T1 =-0 and T2 = T,, is a solution. This corresponds to the decision rule of

* 2. T, =-c and T, = T11° is a solution. This corresponds to the decision rule of
i110

D1.

3. If a2 is greater than aI we expect the performance of D2 alone to be better than
that of D alone and that of the selfish decision rule in which each detector tries

,. , to rrnirrdze its own detection cost, not the system decision cost, by using Tl,
,11 .-. T21o
T,10
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We now prove three lemmas concerning these equations.

1. Lemma 1.

For p < a1 /a2,
3. "."' andTI -< T 110

and

T 2 < T21o

where Tio is the optimum threshold of the ith detector operating alone.

Proof-

Since the argument of the complement of the error function in each
denominator is less than the argument in the corresponding numerator, the

* fraction is always less than one. This implies that

Ai (Ti) - C ,i= 1,2.

2. Lemma 2

For p =a 'a2 , the only possible solution of(2.2S) and (2.29) is:IPII I .

T2  T210
and

* T1 =.czJ.

Proof:

For p = a, ia2 equation (2.29) becomes

A, (T,)= C = A2 (T 10 ) . (2.30)

The corresponding value of T1 is T1 =.oc.

3.Lemma 3
For p 2! a, ,a2 the optimum solution for T1 and T2 is:

and
'-T. T ,

, 2  210 .

This means that the decision of the optimum AND fusion is that of D2.

Proof:

Recall that the CD threshold line divides the observation space into two
decision regions. For positive signals the following inequality is satisfied in the
region to the right of the CD line:

- v'2'H (2.31)
C YI '-2 i'H0 )< fRYl 'H
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The converse of this inequality is true in the left region. The decision region ZI
of any other decision rule contains areas from the right and from the left of the
CD line. Areas to the right will have a negative contribution to the decision
cost while areas to the left will have positive contributions. Now assume that TI
and T2 , where both are finite, satisfy the necessary condition (2.28) and (2.29).
We shall prove that they cannot correspond to the optimum solution. The
finite point ( Ti T2 ) either lies to the left or to the right of the CD threshold
line as shown in Figure 2.6 a and b respectively. In Figure 2.6 a the intersection
of the CD line with the line Y, = T, is a better solution since it excludes an
area in which C f(y, 'Y2 Ho ) is greater than f(yj ' Y2 /1H1 ). A better solution
than this has the same T 2 but with T, = -00 since the added area has negative
contribution to the cost. In Figure 2.6 b, T, = .o and T'2 is a better solution
than TI and T2, since the added area has a negative contribution to the cost.
In both cases T, = .00 is the optimum solution and the corresponding optimum
value of T2 is T, 10 .

As a result of the above three lemmas it is clear that

1. Any solution of the necessary conditions must satisfy
Tl < Tll and
T1  T 110 an
T, < T1o

2. The performance of the AND fusion saturates to that of D, alone for p >
a1,a 2. We might recall that the threshold line of the CD system changes slope
at that value of p. We will refer to this value of p by pc,. This result is in
contradiction with Lauer and Sandell's results [4] which shows performance
continuing to degrade with increasing p for

P -- P r
Limiting behavior for = p-i.

For p =-I the joint probability density function f(y 'y, 'H0 ) has values only on the

line y1 = -, So any threshold values T1 and T, such that T1 = -T, will produce

AND fusion with zero probability of false alarm. This can be visualized from Figure

2.7. Consequently, Pd will be given by

P= 0.5 erfc T2 -a} -0.5 erfc T2 +ai}. (2.32)

Maximizing P, with respect to T 2 yields

T2 =(a2 -a,),'2 . (2.33)

For the special case of equal SNR sensors. T,=0.
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D. NUMERICAL RESULTS

The average decision costs vs p for a, = a 2 = 2, and Cs 1 are shown in Figure 2.8S.

* . - Threshold values T1 and T2 vs p for the same case are shown in Figure 2.9. Figures

2. 10 and 2.11 show the same for C = 10.

These four figures for the case of equal signal-to-noise ratio show that the two

detectors cooperate with each other using the same decision rule ( equal thresholds )

4. Their threshold is an increasing function of p. The limit of this threshold as p -+ -1 is

zero. This behavior agrees with (2.33). The limit of the threshold as p -+ I is T10. This
is because for p -+ I the two systems have identical observations.

The detection cost curves show that the cost is an increasing function of p. The

curve of the AND fusion has the same shape as the curve of the CD system. Both

systems attain their best performance at p=-1. They have the same worst performance

for p= 1.

Flizures 2.12 and 2.3represent the case of unequal SNR sensors for C= I.

Figures 2.14 and 2.15 show the same for C= 10.
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These four figures for the case of unbalanced sensors show that, the two

detectors cooperate using different thresholds. The threshold of the higher signal-to-

noise detector is an increasing function of p while the other threshold is a decreasing

function of p.

The cost curves show that the fusion rule has its best performance at p =-1.

Both DD and CD have their worst performance at p= pc,. For p - per the

performance of the optimum fusion rule is the same as the detector of the higher

signal-to-noise ratio. Recall that CD system has perfect detection for p = 1 when the

SNR's are unequal. As C increases the average cost of each system increases. This can

be explained from the expression for R in which the probability of false alarm is

weighted bv C.

E. DISCUSSION AND CONCLUSIONS

We have shown that the optimum fusion rule is determined by the ratio of costs

and the apriori probabilities. For equal error costs AND and OR fusion rules are
equivalent. This is not surprising since each system turns out to be the minimum
probability of error detector: thresholds are adjusted such that I -P'= PC It might also

be noted that the optimality of the fusion rule is independent of the correlation

coefficienz and the signal-to-noise ratio in this case. We also note that the detection

cost of the optimum fuzion rule has its minimum value at p=-1. It has its maximum

value at p = a1.a 2. The performance saturates at the cost of decision of the detector of

higher SNR. In the interval (p e [aa 2, 11), the optimum fusion rule ignores the
decision of the detector of lower SNR. As a good dynamical example that agrees with

this result is the switched diversity combiner [21] in fading environments and its

centralized counterpart, the maximum ratio diversity combiner [221. Recall that for

unequal SNRs the performance of the CD system improves in this interval and has

perfect de:ection for p = 1. Also it is important to note that the optimum thresholds

of the individual observers are not the same as if they were operating independently,

but must be determined by simultaneous solution of two coupled nonlinear equations.

This represents the cooperation between the two detectors to work as a team. Lastly

the performance difference between CD and DD is due to the information loss in local

data processing. Lo,,ever DD has fewer requirements on the communication channel

in contrast to CD which requires infinite bandwidth. A compromise between these two

extremes is to allo,. more information than just decisions to be sent to the fusion

p
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I center. This is the concept behind the Quantized Detection algorithm considered in the

following two chapters.
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III. DETECTION USING QUANTIZED SENSOR OBSERVATIONS

A. INTRODUCTION

So far detection with sensor observations has been described using two methods.

In the first method all sensor observations are sent to some central processor which

makes a decision based on a likelihood ratio test. In the second method only local

decisions are sent to the central processor which fuses these decisions into a global

decision. While the first method is very easy to design it requires in principle infinite

bandwidth communication channels. The second method requires only one information

bit per detection. Detection with quantized sensor observations will be introduced in
this chapter. The main goal of the chapter is to grade the road from the DD problem

to the CD problem. It will be referred to by Quantized Detection. QD. The

performance improvement of the DD problem will be traced as the amount of

information delivered to the fusion center increases.

First let us consider the problem of the Primary Decision Maker (PDM) and its

quantized second opinion (consultant). We will prove three theorems concerning the

decision rule of the PDM. Then fusion of two quantized observations of an arbitranl

number of levels will be considered. As a special case, fusion of two sensor

observations, one quantized to N levels and the other to N+ I levels, will be proven

equivalent to the PDM and an N-level quantizer. Comparison between different

configurations will follow.

B. TEAM DECISION OF A PRIMARY DECISION' MAKER AND A SECOND
OPINION QUANTIZER.

. Formulation of the PDM Problem

Consider the structure of Figure 3.1 in which y1 is quantized into yIq by the
quantization rule a of N levels.

Y "-+Y (3.1)

The primary decision maker will make his decision uo, about the phenomena H. based

on its own observation v and the quantized observation V• lq"

,.1
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The problem of the PDM is
I. to design the quantization rule a i.e. to specify the set of N points

.00 = X _< X 2 -< ... X < 0<

that defines the quantizer intervals, and

, 2. to design the decision rule Y2

Y2: Y1q x Y2* (0, ) (3.2)

in order to minimize the decision cost.

2. Problem Analysis

Our approach is as follows. We first design the optimum Bayes decision rule
given a set of quantizer parameters. Next, the average cost is expressed as a function of
these parameters. We then minimize the average cost with respect to them.

a. The Optimum PDMI Given Some Quantization Rule a

0 We have shown in Chapter I that, to within an additive and a

multiplicative positive constant the average cost is given by [6]

R = C Pf- d (3.3)

where C is the ratio of error costs and P, and Pd are the probability of false alarm and

probability of detection respectively. The PDM receives a quantized level Ylq Qj
He will make his decision on the basis of his own observation Y and ylq The
performance of the the primary decision maker, given some quantization rule a, is
given by the following lemma.

Lemma 3.1
The probability of detection and probability of false alarm of the Primary Decision

Maker are given by:

'd f4 +1 e Z 1Y2 'H ) dy1 dY2  (3.4)0 i 12 ZIj

and
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P [X i+ I  Hy,y2 /H 0 y) dy 2  (3.5)
P , Pf =i S P

i1 X. v Z-2 Ii

where Z is the decision region Z, given that yle[X,,X, + 1].

Proof:
The proof is given in Appendi (A).

The decision rule of the Primary Decision Maker is given by Theorem 3.1.

Theorem 3.1

Given Y1q and y2 the decision rule of the Primary Decision Maker of Figure 3.1 is

1. deterministic

Y,:2 q X Y, ( , I ) (3.6)

2. a likelihood ratio test

O if A (Y2 ) - e, (Y2 ) .j= 1,2,...,N (3.7){ 0 ifA(y,) < E.(y)

where A (y2 ) = :Y2 H1 ),fy2, H0 )
the threshold function E. (Y2) is given by

f~ xj +  F )d
s' -

E) ('2) = ,j= 1,2,...N. (3.3)
i + lfay, ;y2 ,H 1 ) dy1
x. -

o

Proof
We first insert (3.4) and (3.5) into (3.3). Each term of the detection cost (3.3) is then

given by

R. X + C y1fTv .v, H0 ) y, 2 HI )]dv dv, (3.9)" Ri y eZ1 . X. *1- "

l Z

To make R. in (3.9 )negative an optimum decision rule assigns y toZ if
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...- . ..

. • • o % - -. . % • o ~ . .. . ... •, .-. ,o-. . o -. . .. .*.. . . . . - . . - .



C + +Yt 'Flo ) dy1 - f( + yl ,Y2 /H1 ) dy, > 0 ,j= 1,2,...N (3.10)

otherwise it will assign y2 to Zo .

Applying Bayes rule and rearranging terms, decision rule (3.10) can be

written as

Ai+ 
Yy2 ) C 

d(1
Xi+

. .A (Y2 ) C X j = 1,2 .... N ( .1

' J .+ -YY2'H1) dy1

which completes the proof.

b. Optimum Quantization oj Y

According to Theorem 3.1, the decision rule of the PDM is a likelihood

* ratio test with data dependent threshold. The threshold depends on the choice of Xi 's.

To find an optimum solution for the X. "s is not any easier than that of the DD

problem. Recall that for the DD problem optimum solutions are possible only for the

case of conditionally independent observations. Only suboptimal solutions are possible

for the case of correlated observations. We will not expect more for the QD problem.

Let us consider each case separately.

3. Conditionally Independent Observations

Under the assumption of conditionally independent observations, i.e.

fqv 1 y2,H ) = ffy 1,H) (3.12)

the decision rule of the Primary Decision Maker can be simplified. This decision rule is

aiven bv the following corollary of Theorem 3.1.

Corollary I
Assurming conditionally independent sensor observations, and given y Iqand the

decision rule of the Primary Decision Maker of Figure 3.1 is

* 1. deterministic

-.4

Y2 'Ylq x Y, -(0 , 1) (3.13)
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2. a likelihood ratio test

U I if A (Y2 ) 2:,E)...J= (3.14)
0 if A(y )< E).

where A /Y ~ 2 1H, )IfRy,'H0

3. the threshold E). is given by

pX Jx+kIffyiiHO) dy1
E). = C ,ijl,..N (3.15)

Proof
By applying condition (3.12) in the threshold equation (3.8 )one obtains (3.15) which

* completes the proof.

A Let us denote the conditional probability of detection and the conditional

p robability of false alarm of the PDMv given that the 4~ quantization level of y1 is

rcceived by Pd and P. Let T.be the set of all pInsy for which

A 2 (Y2 ) : E0 (3.16)

Then P and P can be written as
di ,

( Pv 'HI) d, (3.17)dj J Y -2

- and

P, f iHO)dy, (3.18)
-A.2

* Equations (3.4) and (3.5) are now given by
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t1

and

P Xi+ f yIj /H o ) dy f(y /H ) d (3.20)
-' ' 2 0 2 (.0

Substituting (3.19) and (3.20) in (3.3), then differentiating R with respect to X

,{j = 2,3,...N} wiU yield necessary conditions for optimality of the set of N equations.

CfqX y ,y -4 ,- 'H0 )dy,
Hk )d 2  fXk

k k-I

"I y) Hj )dy, - (XkY2 H)d 0, ]= ,k=2,3 ..., N. (3.21)
P k k k-I k ) -2

* Applying Bayes rule and rearranging terms, (3.21) can be written in the following way.

~ '~k ;ay,"H) dy2 - f Y2' Flo) dy 2

(x k )=C kk . ,N (3.22)
q-v,,'Hj). dy ,H) dy,

dPfk T " k-I

The set of N-I necessary conditions (3.22) are general for any statistics of v I  For the

speciai case when A (v,) is monotonic in y, let T. be the value of ' 2 for which

-. = A, (TI) , = 1,2.N. (3.23)

A'-" So T. is given by

*x ' H) dyv

A (T )= C ,j=1,2 .... N (3.24)
Xj+ 'V 

11) dy-
AJ

'A.
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* For this case of monotonic A (y,) the set of necessary conditions for optimality (3.22)
can be written as

ST k f(Y2"H0 ) dY2 . TfqY2,' H) dy,
A (X IT k k-I ,k= 2,3,...,N (3.25)

"T f(Y2/Hl) dy2 - JTk- f(Y2,H) dy2

;'N

Equivalently we can write (3.25) in the form

TTk-l dy,
:'-i:.., J TV l 2' 0°  d 2

A (Xk ) = C k ,k= 2,3,...,N . (3.26)

JT k- .y ,, ) dY2
Tk -2 1 )y

P and 2-in this case are given by*d

Pd =q' H) . (Y2 H1 ) d,, (3.27)

I

and

P 'faY, Ho) dY fY H0 ) d, (3.28)
f &i I i.

Equations (3.24) and (3.26) are only necessary conditions for optimality for
monotonic likelihood ratio. They correspond to minima if the Hessian matrix

* [.a2 R aXiaXi] is positive definite. All solutions must be checked for the global minima.
4. Solution of the Primary Decision Maker Problem with Independent Sensor

Observations and Monotonic Likelihood Ratio
The following theorem summarizes the above solution of the PDNI with

independent sensor observations and monotonic likelihood ratio.

.. , 4 64
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Theorem 3.2

The decision rule of the Primary Decision Maker with a Quantized Consultant (for

independent sensor observations and monotonic likelihood ratio) is;

1. deterministic

Y2 : Y1q XY2 -(0
' 1) (3.29)

2. a likelihood ratio test

I ifA(Y2 ) < Eu 0 = 0,r Y) < ® j=lI ......N (3.30)

where A (y)= Ry2 III )"fY2, Ho )

3. the threshold function 0 (y2 ) is given by

i X.+ 'QYl, H0) dY,

). = C ,j =1) .... N (3.31)
f Xj+ f(y, HI) dy
X.
J

The optimum set of quantizer interval end points must satisfy the set (3.26 ), where

Tk's are given by (3.24). All possible solutions must be checked for the global

minimum cost.

5. The Case of Correlated Observations

We now move to a more realistic situation by removing the condition of

independent sensor observations. In many radar and sonar problems noise in nearby

sensors is likely to be correlated. As we mentioned before the decision rules (3.11) are

likelihood ratio tests with data dependent thresholds. It is impossible to come with

their optimum functional expressions [4.] A suboptimal solution for the case of

correlated observations is to use likelihood ratio tests with constant thresholds as local

decision rules. These constant thresholds for Y, are the values of y2 for which the

inequality (3.11) is an equality. i.e.;
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X+Jk IYl/Tk H0) dY,

A (Tk) = C ,k=,2,...,N (3.32)
X k+ fyi,,Tk,H

1 ) dy1
Xk

In tenns of these thresholds Tk s and the quantizer points Xk 's one can write

expressions for the probability of detection and the probability of false alarm in the

form of (3.4) and (3.5). Substituting for P and P in (3.3) and differentiating R with

respect to Xk for k= 2,',...N yields the following set of necessary conditions for the

case of monotonic A2 (y):

YXk, Ho) d-,,
T

(Xk) = C k ,k= ... (.33)
T klffv '.,H d
Tk "-2 H,) dy,

The set of equations in (3.32) and (3.33) constitute 2N-I equations that specify the

quantizer interval end points IXk } for y1 and the thresholds iTk) for y,

C. TEAM DECISION OF TWO QUANTIZERS AND A FUSION CENTER

In this section we will consider the problem of making a global decision based on

two quantized observations.

1. Formulation of the QD problem

For the structure of Figure 3.2, Yv is quantized into N levels by the

quantization rule cL1

Iq

and v, is quantized into M levels by the quantization rule a,

.. , " Y . (3.35)

The quantized values Yq and v, are sent to the fusion center which must decide which

state of the phenomena is true. It is required to design the quantization rules u and

a, and the decision rule -
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Y1q X Y q + (0,1) (3.36)

to minimize the global cost.

2. Problem Analysis and the QD Algorithm

The observation space of the fusion center contains NM points to be divided

into two decision regions. Since there are as many as 2NM' fusion methods, checking all

of them will consume a very long time even for small values of N and M. A suboptimal

solution is to approximate the threshold equation of the corresponding CD problem by

a piecewise curve in the yl Y2 plane. This is illustrated in Figure 3.3.

The figure shows a schematic diagram of a CD threshold curve and its

staircase approximation. The approximate curve consists of segments of straight lines

connected together. The coordinates of the connecting points will play the role of the

interval end points of the quantizers. Let us first write an expression for P and P in

terms of these point coordinates. If this expression of the cost is minimized with

respect to each coordinate there will be as many equations as the number of

coordinates. Solving these equations simultaneously yields the quantizer parameters.

This is the core of the QD algorithm which is summarized as follows:

1. Derive the threshold equation of the CD system.

A (yI ,y2 ) = C (3.37)

2. Approximate the threshold equation by a stepwise curve satisfying the N and M
constraits.

3. Write an expression for the cost in terms of the curve parameters.
4. Mininize the average cost with respect to the curve parameters.

Let us illustrate how the algorithm works for the case of detection of a known

signal in gaussian noise.

3. An Example: The Known Signal in Gaussian Noise

Consider Figure 3.2 when Y and v, are given by

-, Ho'Y = n.

H 1 x = a. n. ,i= 1.2 (. S)
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where the a s are positive constants and N - [n n2 ] is a gaussian random vector of

zero vector mean with covariance matrix:

t lK -- ( 3 .3 9 )

It is required to design the N-level and the M-level quantizers Q1 and Q2

and the decision rule y where

-. : YqX Yq* (, 1) (3.40)
,_q

to minirnize the average decision cost.

Procedure folloiiing the QD algorithm

The threshold equation of the CD problem has been shown in Chapter II to have the

form:

(a -p a*( , a2+ paa2)o()

"(al -P a2 )l +(a 2 +p al )Y2 =(a1  +a 2 -p a1 a2 ),2+(1-p2 )log(C). (3.41)

1. The CD curve is a straight line in the Y y2 plane.

2. Possible stepwise approximations for the threshold equation are shown in
Figure 3.4 . We notice that in Figure 3.4 a and c the two quantizers have the
same number of quantizer levels. While in Figure 3.4 b and d one quantizer has
one more level than the other. From Chapter II, we can expect that the
constant C will decide the superiority of a or c and of b or d. We shall
consider optimum parameters of Figure 3.4 a and b. Similar treatment can be
considered for Figure 3.4 c and d. In Figure 3.4 a the point X1  -m while T
is Finite. In Figure 3.4 b X1 =O and T,=

3. The probability of detection of the decision rule of Figure 3.4 a is given by,

f"': Pd _AXryy 2 H1 ) dy1 dy2  (3.42)
-

0. and Pr is given bv

P i- . ,y l '  ;H0 )dy dy.,. (3.43)
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For the detection rule of Figure 3.4 b P is given by:

[i q'  d i+ /H, dy 1 dy 2  (3.44)

and Pf is given by

" l f y2 IHO dy dy2  (3.45)

4. Necessary conditions for optimality of parameters of the curve in Figure 3.4 a
are.

f Xi+ lfy /Tj,HO) dy,

A(T i )= C ,i =12 N (3.46)

f JXi + f(v'Tj,H1 ) d"v
X.

and

f T. ffy 2 'X,H 0 ) dy 2

'A (Xi) T i 2,3,...,N . (3.47)
""~f I i-i l  -., Xi,H 1) dY2

V For Figure 3.4 b ,the optimality conditions are

Xi
x" ]'X. yf( ,1Ti,'H°) d y I

A (Ti )C ,i= 2,3.N (3.48)
f Xi+ lfy,'T,Hj) d 1

x. i

0

and
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0- I~T.
.T. f(y2/X',H0) dy 2

rT.i
; A (Xi ) =C Ti = 2,3,...,N . (3.49)

S TiR (2/1Xi'H) dY2

The last two equations are exactly the same as the necessary conditions for

optimizing detection using a Primary Decision Maker and its quantized second opinion

for the same signals in gaussian noise. Recall that the information available at the

PDM is more complete than that available at the fusion center of two quantized

observations. Yet the two problems have the same solution. This is a proof of the

following lemma.

Lemma 3.2

Optimum detection of known signal in gaussian noise using two quantized observations

of N and N + I levels is equivalent to optimum detection using the first quantized

observation and the second continuous observation.

Lemma 3.2 is applicable to any case with a monotonic likelihood ratio. This can be

easily proved by writing the necessary conditions of optimality for the two

configurations. A special case of Lemma 3.2 is that of N = 2. It corresponds to the

tandem configuration of two detectors in a Distributed Detection Network (DDN) [10].

The "downstream" detector (decision maker) mak.es its decision based on its own

observation and the "upstream" detector's decision.

D. NUMERICAL SOLUTION FOR THE SYSTEM PARAMETERS

It is of interest to compare the four sets of equations ((3.24 ),(3.26)},

((3.32.(,.33)1, ((3.46 ),(3.47)} and f(3.48),(3.49)} with that of Lloyd and Max [S,-) for

minimum distortion quantizer parameters.

Max's trial and error algorithm to solve this set of nonlinear equations can be

used. However Max's algorithm is very time consuming [241. We have used instead

the method of successive substitutions with an initial guess satisfying

X2 < XJ 3 :.... XN (3.50)

and put the equations in the form

Z = G(Z) (3.51)
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The kth iteration is then given by

Zk = G ( Zkl) (3.52)

. We will devote the next chapter to solving some numerical examples using this method.

E. SUMMARY

In this chapter the method of detection using quantized sensor observations has

been introduced. This method, referred to by QD, can have significant performance

improvement compared to the distributed detection algorithm (DD) with only

marginally more demand on the communication channels. The QD algorithm involves

approximating the CD threshold hyperplane by a stepwise hyperplane that can be

spanned with the quantized data and that minimizes the detection cost.

Also the equivalence between two detection configurations, one with tandem

connection and the other with hierarchical structure, has been shown.
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IV. NUMERICAL RESULTS

In this Chapter some examples are solved numerically using the QD algorithm.

First the detection of known signals in gaussian noise is considered. Next detection of

signals with exponential distribution is considered. Finally, the algorithm will be
applied to differentiating between gaussian signals with different variances.

A. KNOWN SIGNAL IN GAUSSIAN NOISE

Again consider Figure 3.2 when y, and Y2 are given by

H0 :v. = n

H1 : yj = ai + ni,i 1,2 (4.1)

with a= 4 and a2 = 2. The noise vector

. N=[n 1 n 2 It (4.2)

is of zero vector mean and with covariance matrkx given by:

](4.3)

where p is given bv

p = E { n, n2 ) . (4.4)

It is required to:

1. Design the primar" decision maker PDM and its N-level Quantizer to minimize
the average decision cost. We have designated this structure configuration A.

* 2. Design the N-level quantizers Q, and Q2 and the decision rule u° to minimize
the average decision cost. We have designated this structure configuration B.

3. Compare the performance of the two configurations and that of the completely
centralized system.

Follosing the algorithm Nse have:

1. The threshold equation for the CD problem given by,
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(a, -p a2 )Y, I (a2 -P a, )y, = (a,2 + a22 -2p a, a2)/2+(l-p2 )log(C) (4.5)

a straight line in the y1 Y2 plane.
2. Figures 3.4 a and 3.4 b show the decision regions for configuration A and

configuration B respectively.

3. Probability of detection Pad and probability of false alarm Pn of PDM are
given by:

~Xj+1 I 2/ (T a, p (y -a, 46Pdl i- X exp('y /2) erfc k 2  dy (4.6)
d i-T In JP2

and

PJ -i~ exp(_-yj!2 erfc)T 1 d 47:: i-=1 X. ,/2-=== " (l-p 2 ) dyI . (4.7)
= . I

-4..

_, Also Pd2 and P of configuration B are given by:

Pd2 = 2,2) erfc k -p (Y1 a d"-.d2 Tr x(Y -7('1-p2)

and

_x PI_ T p v l
p iJ- i-p. xj 2,) erfc Tk dy1  (4.9)

4. For configuration A equations of the quantizer interval end points and
corresponding PDNM's thresholds for the gaussian case are given by

S9

__erfc _ _'p Xk - erfc X

A (X C ,k= 2,3, N (4 10)
(T -a P( a)T a,- -erfc k- , rfc "k I J

and

5 -

;2 ; ; i -? i- --- -. ', i i- - - . ' 2. ; . .' . 2. . . . " - . % 2 '- ." .' , " 2 " - .- . ." - . .' 2 '- . - ,- ". ' , . " .- . ' .- G .- - . .-? ; ' ' ." ' " -. " . -.7.6- -



( X.-P Tk -p X pTkj-A(Tk)=-C "erfc t . (l-p 2) -erfc j (l-p 2) ,kl2 .(.1

erc k+&ij k) erf XpTk- 2

r ,.,,"' A (T )  fi C k 1i ,2, N . (4.11)
i.' ";":"" erfc fXk +I ' al "--P (Tkal) " e rfc x k " a , "p ( T k '-a 2 ) )1 P ) iI

. For configuration B the quantizer end point intervals X's and T's are given by:

erfc fTk-l-P Xk "erfc k -PXk

A(Xk) = ja,k =2,3, N (4.12)(Tk-I-a 2 'p (Xk-a )  k" 2 a k) IXk-a
erfc ( (j2j ) erfc k ,(1.p )

and

X -p Xk -pTk
* erfc Xk+I erfc k k

A (Tk) = C ,k=2,3, N. (4.13)
k k } -rac, -P(kaX a p (Tk a:)

erfc- l-) kJk

We have solved the system of equations of the two configurations using the

method of successive substitution for N = 2, 3, 4, 5 and 6 . Figure 4.1 shows the

receiver operating characteristics ROC for the two configurations For p = 0, for different

* values of N. The ROC for the CD system is also shown. The effect of- p is illustrated

in Figure 4.2. The figure shows ROC curves for Configuration A for different values of

N and for p=0 and 0.25. Figure 4.3 shows the average cost of Configuration B and

CD vs. C, for different values of N. The relation between the cost of detection for

Configuration B vs. the number of quantization levels is shown in Figure 4.4 . The

figure shows the exponential decay of the detection cost as the amount of information

available at the fusion center increases.

The following results are noted from the curves.

1. Configuration A has better ROC curves than Configuration B. The
performance difference is large for N = 2 but gets smaller as N increases.

2. Both performances converge to that of the CD in a uniform manner.

3 As the correlation coefTicient increases the performance difference decreases.
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4. As N increases the average detection cost gets smaller and tends to that of the
CD. Since the number N reflects the mutual information between the input and
the output of the quantizers, the relation between the performance degradation
and information delivered to the fusion center is strong.

B. SIGNALS WITH EXPONENTIAL DISTRIBUTIONS
Consider again Figure 3.2 .Let y1 and y2 have the following distributions:

H10  k fy) X0 exp( % )(414

and

H, f~~ ) /kX exp(. 1 4 )i 1i 1,2 (.5

and assume tnat k1 is less than .It is required to design the quanitizers and fusion
rule that m-uinmize the average dIecision cost

FoIlo~sing the QD algorithm ise have:

1. The CID threshold equation is giveni h'

y 1 -y, = C,(.6

w'here C1 is given b%-

= C. 4V
40

The CID threshold equation is a straight line in the first quadrant.

2.F: 'r c 4 1 showvs possible apflroximatilons of the threshold equation. For N =2

:c s-, mme:n',o sugees ts equal detector thresholds. For N 3let us Fix X1 and
INto zero.

* 3. The prbbh~of detection and probahiii,% of false alarm P'd and Pf are given

ST



Pf = [ exp(-A 0 Xi)- exp(-X0 Xi ) I exp(-. 0 Ti) (4.19)
,.'..i= l1

4. Writing an expression of the average cost in P and P as before and minimizing
with respect to Xk ,k=2,3,..N and Tk , k= 1,2,.. N-I one obtains the set of

. equations

exp(( 0 - 1 )Tk }1= X- C p
exp(-X 1 Xkk )Txp-X k+ ,k= 1,2,... N-I (4.20)X1.] exp(-'t 1 X k )-exp(-kl1 Xk+ 1 )

and

exp•(" k c exp( 0 Tk )exp(' 0 Tk- 
) ,k= 2,3,... N. (4.21)o -"kexp(-k

1 Tk )-exp(- X Tk+ )

This set of equations Have been solved by the method of successive

substitutions for k, = 2, X, =1, and for N- 2,3.4,5 and 6. A FORTRAN

.program to calculate the quantizer parameters is given in Appendix D.
Figure 4.6 shows ROC curves for the quantized as well as the CD systems. The

average detection cost is shown in Figure 4.7.

We note the following:

I . The largest performance improvement occurs when we switch from N = 2 to N
= 3 ( i.e. oniy less than one more information bit per detection).

2. The performance curves { ROC(N) ) and { R(N) ) converge uniformally to the
performance of CD

C. GAUSSIAN SIGNALS WITH DIFFERENT VARIANCE

0 Consider again the structure of Fiure 3.2 . Let sensor observations y, and v, be

independent, identically distributed gaussian random variables of zero mean. However,
under Ho, Var(y o 2

and

* under 1II. Var(y i j= " ,a = 1,2. For specificity, let

(To I and =

Quantized sensor observations are sent to the fusion center to decide which of the

hypothesis is true. It is required to design the quantizers QI and Q, as well as the

. fusion rule to minimize tie averace decision cost.
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Following the QD algorithm we have:

1. The CD system decision rule is a likelihood ratio test. The CD detector declares
H is true if

I Y2 +Y 2
2 < (1/2)log[a 1

2 /(cr02 C)]/(a"0 2 Cr2 ) (4.22)

otherwise it will declare H0 is true. The threshold equation is the circle

2 2 2y +y2 = O (4.23)

where R0
2 is the right hand side of inequality (4.22).

2. Possible approximations of the CD threshold equation are shown in Figure 4.8.
3. Figure 4.8 a corresponds to 3-level quantizers. The corresponding probability of

detection and probability of false alarm are given by;

0 Pd (3)= [erf(-Xa 1 )12  (4.24)

and

Pf (3 ) [erf(-X, 0)12 (4.25)

where Y and y2 are subdivided by the points X and -X. For the 5-level
quantization approximation of Figure 4.8 b, the probability of detection and
probability of false alarm are given by

P (5)= erf(X 3 ,'aI ) {2erf(X 2 '/'a, )- erf(X3 ,'ar ) ) (4.26)

and

Pt(5)=erffX3 c0r) {2erfRX 2 "a0 ) -erfqX 3 'ao ) } (4.27)

0 , where X2 , X3 ,-X3 and -X2 define the the quantization intervals of both y,
and y2

4. Inserting Pf (3) and Pd (3) into R in (3.3) and minimizing R with respect to X
gives
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i rL erf(X/la )
A (X) =C (4.28)

0 erfX /o, )

Also inserting Pd( 5 ) and P(5) into (3.3) and minimizing R with respect to X2
and X3 gives;

A (X2 ) = C a e X (4.29)
a 0 erf(X 3 l )

A( 3 )=ca, erf(X, /a ) - erf(X 3 Ia 0 ).:A (X 3 ) = C -(4.30)
ao erf(X2 'aI ) - erf(X3 /6 )

Solution of these implicit equations in the quantizer parameters can be carried

out by the method of successive substitution. The FORTRAN program to calculate

them for any value of a and a1 is given in Appendix F.

7 7igure 4.9 shows the average detection cost vs. C for 3-level and 5-level

": quantizer systems. Detection cost of CD is also shown. The figure shows that the

detection cost decreases dramatically using 5-level quantizers in comparison to 3-level

quantizers. The cost of the CD system is only slightly lower than that of the 5-level

quantizers.

Similar procedures can be carried out for the case of correlated observations. The CD
curve in this case is an ellipse with principle axes passing through the origin. It can be

% .approximated in a similar way as the circle.

D. CONCLUSION

The above examples show the uniform convergence of the Quantized Detection

- , Algorithm to the Centralized Detection Algorithm. The Distributed Detection

," Algorithm is a special case of QD. It follows that Quantized Detection is an efficient

utilization of bandlimited communication channels.
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V. THE CASE OF VECTOR OBSERVATIONS

A. INTRODUCTION

In the previous two chapters the QD problem for the case of scalar sensor

observations was solved. It is now time to extend the QD algorithm to the case where

. each local observation is a vector Yi " The QD algorithm can be applied as long as the

corresponding sufficient statistic for the centralized detection problem can be divided

into local statistics to be quantized. Let us consider the gaussian case and put it in the

- previous framework.

B. QUANTIZED DETECTION WITH VECTOR OBSERVATIONS

For the structure of Figure 5.1 the observations at locations 1 and 2 are given by
'-

H' Y. =N.
v0

and

H1 Y A. + ,i = 1,2. (5. 1)

Let us denote the observation vector by _

S •(5.2)

The noise vector _N, given by

N", (5.3)
,4...L/

0. is multivariate gaussian with zero vector mean and covariance

R? Il L?12

R= (5.4)
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R1 ,R and R,2 are the covariance matrices of the noises at locations 1 and 2 and their
common covariance matrix. The signal vector A is given by

A 4]- (5.5)

The CD system decides that Y belongs to Z1 if[6]

exp Y(-1/2) [ (7 -A)'R' (Z -A) -Y R I .] > C. (5.6)

The CD threshold equation can be written in the form

A'R- Y log(C) -(12) A'R- A.

Usin2 the block matrix inversion lemma [25], (5.7) can be written in the form0

a YZ +]3 Z2 = log(C) -(1,2) A'R I A . (5.S)

In (5.8) a and 3 are given by

= ~~'?1 -912 :3E' z)-
--A'2 (L?2 -f-1 E I z) R -l 59i

and

(L -12-

* +A' 2 (R2 -21 R1' R12 )-' (5 10)

-. Denoting

• 11 -- 1  (5 1 1)

and
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,l,= (5.12)

(5.8) becomes

11 + 1, = log(C)-(I,2)A'RI A (5.13)

where 14 and L, are bivariate gaussian with zero vector mean under hypothesis H0

Under hypothesis H1 their vector mean is

--.i 1 a A 1

.E (5 141

- Covariance of 11 and 12 is given by

Od a' R1 (t P

Cov(11 .12).Hoct,P (5.15)

In (5.15) p is given by

P = Rl 2 Pv/L(a1la)-(P3i P)j. (5,16)

The distributed signal processing is to form local linear combinations I and 12 , then

* *"quantize them as before. This processing is also shown in Figure 5. 1.

C. SUMMARY

In this Chapter it is shown that the QD algorithm can be extended to the case of

* ."sensor vector observations. An application is the case of high quality local area

,.i. communication and lower quality long distance communications. In this case sensor

observations in local areas are gathered at a local processor to form the local sufficient

- -statistics. Quantized local statistics are then sent to the global far away processor for
fusion.
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VI. OPTIMUM ESTIMATION USING QUANTIZED SENSOR
OBSERVATIONS

A. INTRODUCTION

In the previous part of this thesis there are situations in which a group of

observers make local decisions that, taken in combination determine the overall
performance of a system. The observers may or may not be interconnected. However,

even when they are, for a variety of considerations such as limitations on

communications bandwidth, transmitter powersecurity, or perhaps the ver nature of

the observers themselves, only decisions may be interchanged between them and not all

the observations upon which their decisions are based [1,5,26-331.

Another case of interest concerns the encodine of high resolution measurements

for transmission between observers using a small number of bits. Here a remote

• observer must decide which of N possible discrete values best represents his

observation. A second observer is to combine his local observations with the discrete

data from the first in an optimum manner. In this chapter we consider -he problem of'
' re-eneration of a remote sensor observation using its quantized representation and a

local observation. The design of the quantizer at the remote sensor location and the

optimum linear estimator to combine the quantized data with the local observation to

.:minimize the expected mean square estimation error will be considered. Generalization

4 of the results to the vector case is also shown.

B. THE LINEAR MINIMUM MEAN-SQUARE ESTIMATE OF Y

Consider the structure of Figure 6.1 in which the observation is quantized

into v by a quantization rule y

I lq'

The quantized data Y is sent to sensor S, site.

0. The linear minimum mean square estimate of the observation y, from ql and y, is
- .shown in (Appendix F) to be

L" .
e. " P 2 .1
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where we have assumed that Y and v. are random variables with zero mean and

variances

E Y -. } a -i  ,i =  (6.3)

and correlation

L I Y ' Y } a 2  (6.4)

The scalar quantities il and ji are parameters of the quantizer and are given by

f k1' k Qk 2 )a 2  (6.5)

and

NV1 =( Pik Qk Ck )'al" (6.6)

N is the number of quantization levels and Ck and P are given by

Ck = Xk+ VI ay. )dYl )"P k-c ( X k -

and

Pk 41 *if'Y ~

Qk is the kLh quantiza:ic, , .: ; .

,k= . N, arethc ' -u " .
XN =.madX,

1: i. .
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The expected mean square error is given by [341

A

E{(y 1 Ylq )2 } -E(y 1 } i }- E( YZ } (6.9)

where Z isthe vector

[Yq y2 (6.10)

Equation (6.9) can be written in the form (Appendix D)

E( )e2 } = c12 (l-p )(1-eo )/(1-p2 o) (6.11)

where (o is given by:

0) = A2"/ . (6.12)

A plot of E(e 2),'"7 1
2 vs. (o is shown in Figure 6.2 for p2 = 0, 0.25, 0.5, 0.75. The figure

shows that the mean square error is decreasing with o. Recall that the criterion is to

minimize the mean square error.

Equivalently the problem now is to maximize co over all quantization rules where

2 - (6.13)I, P? k Qk

Appling the Cauchy Inequality [351 to the numerator yields

( Pk Qk Ck )2 <( k2p Ck2  )(6.14)

with equality if and only if

Qk Ck' (6.15)

98



NN

CD\

I C)

CC
fl L fl

0



Therefore

Pk Qk2  (6.16)

."i *~i.gives an upper bound of (o. Equation (6.15) says we maximize (o , and thus minimize

E{e 2} by making the quantization level Qk equal to the conditional mean of y1 given
that y1 lies in the kth quantization interval. This is one of the conditions

characterizing the classical Lloyd-Max quantizer [18,23.1 There remains the problem of

how to pick Xk ,k= 1,2 .... N, so that the upper bound of o in (6.16) is maximum.

Notice that the upper bound of (o is tj. Therefore, the optimum quantizer will be a

Lloyd-Max quantizer if we prove that maximizing rI over all choices of the set of

points {Xk}, k= 1,2,...N, is equivalent to minimizing the distortion E((Yl-Yjq) 2}. Since

Ei(y-Yjq)2} = a 2-26 1
2a+ 1

2  l (6.17)

'(Yl-ylqI l1-r )

then maximizing rl %ill minize the distortion E((y -Y and vice versa. Since the

Lloyd-Max quantizer is the optimum quantizer for minimum distortion it follows that

it is also optimum for our problem. Accordingly choose Xk 's such that [23,18], (see

also Appendix G)

Xk - Qk Qk-Ik 1,2 .... N. (6.18)
2

Equations (6.15) and (6.IS) along with (6.7) completely design the quantizer [23,18].

Parameters of the Lloyd-Max quantizer can be calculated efficiently using the method

of successive substitution (Appendix G). Values of Efe 2 },a2 vs. N are listed in Table

-V. 2 for p =0, 0.25, 0.5, 0.75. The table shows the exponential decay of the MMSE as the
number of quantization levels increases.

Table 3 shows a comparison between the average number of bits per sample used in

this system and another method in which the Maximum Output Entropy (MOE)
Quantizer [36] is used. Huffman coding [37] is assumed for both quantizcrs.
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TABLE 2

MINIMUM MEAN SQUARE ERROR VS. THE
NUMBER OF QUANTIZATION LEVELS

N p 0 0.25 0.5 0.75

2 0.3634 0.3548 0.3241 0.2477

4 0.1175 0.1166 0.1131 0.1021

8 0.0345 0.0345 0.0342 0.03 30

16 0.0095 0.0095 0.0095 0.0094

32 0.0025 0.0025 0.0025 0.0025

6 0.0006 0.0006 0.0006 0.0006-

128 0.00016 0.00016 0.00016 0.00016

TABLE 3

COMPARISON OF THE AVERAGE NUMBER OF BITS IN
THE MMSE AND THE MOE SYSTEMS

N 2 4 6 8

Optimum
Svstem 1 1.989 2.4768 2.8842

MOE 122.667
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C. CONCLUSION

The trade off between performance and communication is clear from Table 2.

For p - 0.5 the relative MMSE is 0.75 without communication. This corresponds to

substituting o) = 0 in (6.11 ). The relative MMSE decreases to 0.32 using one

information bit per sample. The relative MMSE is 0.11 using two bits/sample. It is

only 0.03 using 3 information bits/sample (N = 8) and is 0.00016 using 7 bits/sample.

We also notice that for high number of quantization levels the estimation error is

approximately equal to the the quantization error. This means that the estimator

depends mainly on Ylq for fine quantization. For coarser quantization the estimator

depends heavily on Y2 to reduce the MMSE. Table 3 shows that the designed system

has considerable reduction in the number of bits per sample compared to the MOE

quantizer system.

D. GENERALIZATION TO THE VECTOR CASE

In this section we will consider regeneration of a random vector Y, from its

* quantized version YIq and a correlated continuous scalar Y2 . As an application

consider a sensor S2 monitoring the activities of N stations. Due to some

considerations, perhaps of safety nature, only simple sensors can be placed near the

stations. Because of other considerations, such as limited bandwidth communication

channels, only quantized sensor measurements can be sent to the monitor. Specific

examples can be the case of monitoring the states of a target in a far field or the

positions of N targets in a multitracking problem [38,39]. Another example is to

monitor the radiation levels outside of N nuclear reactors. A third example is

monitoring the activities of N enemy transmitters.

Let us design the quantizers at the N sensor sites and the estimation rule at the

monitor site so as to minimize the mean square error of each component of Y . Let _

,the sensor observation vector be given by;

" I = [ Y, Y2 ""YIN It, (6.19)

where y1 is the Jt sensor observation ,j = 1,2,...,N. We will assume that components of

* I' are independent. i.e.

" fY i '- j 'Y 2)  =  (Yi 'Y 2 ) , j i.1 = 1,2 ,...,N . (6 .20 )

A Under the above conditions, also y1i and Yljq are conditionally independent for i % j, so
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fRYli Il q IY2  YI 2 ) ,i- 1,2,...,N. (6.21)

The MMS estimate of 1, given ZIq is given by

A

Xi - E { XI/Xlq Y2 }• (6.22)

Or

^ -12 /-12q 1
Aj

Z, (6.23)
SLE (YIN /YINq 'Y2}-

Let us denote the error vector by ', so

[E= I e2 ...eNI (6.24)

where ei is the error in estimating y ,i= 1,2,...,N. The MMS error covariance matrix is

A A

E( ft} _E( (X -XI )(y, -"j )t }. (6.25)

The trace of the error covariance matrix is given by

N
trace( E( g'E t } ) = = e.} (6.26)

0 @where

e i = Yi -E(yli /Yliq 'Y2 }" (6.27)

Minimizing the trace of the covariance matrix in (6.26 ) is accomplished by minimizing

each summand alone since every summand is nonnegative. Now assuming Linear

Minimum Mean Square Estimation, the problem of minimizing E (el 2 } implies using

the Lloyd-Max Quantizer to quantize y1i as was shown previously.
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In conclusion the Linear Minimum Mean Square Estimate of the observation
vector _ implies using the Lloyd-Max quantizers at the sensor sites and the same linear

combining considered in the scaler case at the central processor.

-,1
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VII. SUMMARY, RESULTS, CONCLUSIONS AND SUGGESTIONS FOR
FUTURE RESEARCHS

A. SUMMARY
This Thesis begins by listing some reasons why Distributed Signal Processing is

more practical than Centralized Signal Processing. The status of Distributed Detection,

an important case of Distributed Signal Processing, and its complexity are reviewed in

Chapter 1.

Chapter II deals with the problem of optimum fusion of local decisions into a

global decision. The relationship between the optimum fusion rule and the ratio of

error cost is shown. The dependance of the performance of the optimum fusion rule on

the correlation coefficients between sensor observations is throughly analyzed. For

higher values of the correlation coefficients the Distributed Detection system is shown

to reduce to the detector of the highest signal-to-noise ratio.

A compromise technique between Centralized Detection and Distributed

Detection, Quantized Detection, is suggested in Chapter 111. The main issue of that

chapter is to control the degree of centralization according to the communications

channel constraints. The Quantized Detection technique replaces local detectors by

quantizers and sets a global fusion rule that approximatcs the centralized decision rule.

The algorithm matches the other techniques at extreme limits.

Chapter IV contains some specific applications of the Quantized Detection

Algorithm for detection problems. A significant performance improvement is attained

by replacing Distributed Detection with Quantized Detection with three quantization

levels (one and half information bits per sample vice one information bit per sample).

Chapter Vconsiders applicability of the Quantized Detection Algorithm to the

case of vector observations. In this case local sufficient statistics are quantized in the

same way as before.

Chapter VI deals with the regeneration of sensor observations from their

quantized versions and another correlated observation. The local quantizers and the

E optimum linear data fusion are designed. We arrive at the following results and

conclusions.
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R. RESUJLTS

1. Detection with Distributed Sensors

a. Optimum Fusion Rules in Distributed Detection

The optimum fusion rule depends on the ratio of costs of different types of

detection errors. For high cost of false alarm relative to the cost of missing the target

the AND fusion rule is better than the OR fusion rule, and vice versa.

The performance of the optimum fusion rule depends on the degree of

correlation between sensors. The performance degrades as the correlation coefficient

increases. The worst performance of the optimum fusion rule is at and above a critical

value of the correlation coefficient .,, In that region of correlation the best system

employs only the detector of higher signal-to-noise ratio, ignoring the lower signal-to-

noise ratio sensor entirely. The performance of the Distributed Detection system

improves as the signal-to-noise ratio imbalance between sensors increases. However

there is a large performance difference between the Centralized Detection and the

Distributed Detection for values of the correlation coefficient above pr

* Below pc, the performance of the Distributed Detection system improves as

the correlation coefficient gets smaller. The best performance (lowest detection cost) of
the Distributed Detection system is achieved at p= -I. Recall that the Centralized

Detection system has perfect detection at p = 1. This is due to the efficient use of the

information contained in two observations of positive signals and anticorrelated noise

samples.

The large performance difference between Centralized Detection and

Distributed Detection systcms is due to the loss of information in the local detection

processes. As a remedy to the performance degradation in Distributed Detection we

have introduced the Quantized Detection Algorithm.
% b. Quantized Detection

There is a great improvement in the system performance using Quantized

* Detection with three quantization levels in comparison to Distributed Detection. This

performance difference between Quantized Detection and Distributed Detection

decreases as the correlation between sensors increases.

The Quantized Detection algorithmn is applicable to the case of vector

observations and waveform observations. In those cases, the local sufficient statistics

are to be quantized at the local processor and transmitted to the central site for fusion.
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The Quantized Detection algorithm is implemented by the quantizers as

local processors and a fusion rule, suggested by the Centralized Detection decision rule,

at the central site. The quantizers used in the Quantized Detection algorithm are
designed to minimize the detection cost.

2. Minimum Mean Square Estimation in Distributed Sensor Systems

casclMinimum mean square estimation in Distributed Sensor Systems involves the
casclLloyd-Max minimum distortion quantizers at the local levels and linear

processing at the global central level. A faster iterative algorithm to calculate the

Lloyd-Max quantizer parameters is the method of successive substitution. It also has

more accurate results than previously reported techniques.

C. CONCLUSIONS
We conclude the following:

'N1. Global optimization of the Distributed Detection implies picking the fusion rule
2.and corresponding local decisions that minimizes the detection cost.
2.The optimum fusion rule inDecentralized Detection depends on the correlation

* coefficient , the a priori probabilities and the ratio of costs.

3. For optimum flision of two local unbalanced decisions there is a particular
value of p that decides the optimum fusion rule.

4. For p :5pc OR fusion is better for higher cost of missing target while AND
fusion is better for higher costs of false alarm.

5. For p > Pcr the optimum fusion rule is to ignore the sensor of lower signal-to-
6.noise ratio and optimize the decision of the higher signal-to-noise ratio sensor.
6.The poor performance of Distributed Detection compared to Centralized

Detection is due to the loss of information at the local levels.

7. The Quantized Detection system matches the Distributed Detection system and
the Centralized Detection system for the two extreme conditions of
quantization. As the number of quantization levels increases the Quantized
Detection converges to Centralized Detection.

8. The Quantized Detection algorithm has a tremendous improvement in
* performance over Distributed Detection even with only 3 quantization levels.

9. The performance difference between Quantized Detection and Distributed
Detection increases as the correlation of the observations gets smaller.

10. In case of linear Centralized Detection threshold equations in the observation
space, Distributed Detection and Centralized Detection are special cases of
Quantized Detection.

11. The Quantized Detection algorithm can get the maximum allo~~able
performance in the presence of communication constraints.
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12. The Quantized Detection algorithm can be applied to arbitrary distributions for
the observations.

13. The method of successive substitution is applicable to the design of many types
of quantizers. It has a simple programming procedure and very accurate results.

D. SUGGESTIONS FOR FUTURE RESEARCH

The following are some areas the Quantized Detection algorithm can extend to:

1. Optimum detection using quantized sensor observations for the case of
unknown signal in noise.

2. Detection of M-ary phenomena using quantized sensor data.

3. Utilizing the Quantized Detection algorithm over noisy channels.

4. Illustration of the relation between the complexity in some suitable units and
the amount of information delivered to the fusion center.

5. Utilizing the Quantized Detection algorithm to meet the Neyman-Pearson
criterion.

6. Extension of Distributed Detection and Quantized Detection to more than two
sensors with correlated observations and unequal SNR's.

7. Development of general principles for parsing fusion rules given a Centralized
0 Detection surface in N-dimensional space.

8. Application of the Quantized Detection method to target detection,classification
and trackir g using distributed sensors.

o.
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APPENDIX A
PROBABILITY OF DETECTION AND PROBABILITY OF FALSE

ALARM OF THE PRIMARY DECISION MAKER

Given that the Primary Decision Maker (PDM) receives Qj (the jth quantization

level of the Consultant observation y,), and that its own observation is Y2, its

observation space is divided into two decision subspaces Z,, and Z0j. Let us denote the

conditional probability of detection and probability of false alarm given Qj by Pdj and

P r respectively. Pdi and Pfj are given by:

Pdj = Pr(Declare H1 /Ylq = Qj ,H, is true) (A.I)

and

P = Pr(Declare Hl /Yq =Qi ,H0 is true). (A.2)

These can be expressed as:

P y, Qj , )d (A.3)di, . e Z lj Q - lq

and

P= 2 Z qy2 / Yiq - Qj JH0 )dY2  (A.4)

or equivalently as,

Pd = J Z y ' q = H )dy, dY2 (A.5)
d- 12C Z 1, y1 y Y 'l

and

Pri -- 2 e . yY ,Y2 /Ylq QJ 'H0 )dYl dY2  (A.6)
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But Ry ,y2 /Qi Hi ) is given by [40]

R-2 = H f(Y ,y2 /Hi )/Pr(Qj /Hi) ,Yj [X ,Xj +I I (A.7)'-: f(l 'z/Q 'H )  0 otherwise

where Pr(Q /Hi ) is the probability of the jth quantization level of y, under hypothesis

.H.. It is given by:

PrQ/ j X i . j'j dy , = 1,2,....N ,i=0,l (A.S)

The probability of detection and probability of false alarm are now

'". P Pr(Q j j iI )Pdj (A 9)

0j

and

Pf 3 " Pr(Q iHo )Pfj (A.1O)

Inserting (A.5 and (A.6) into (A.9) and (A.10) yields

= , +YY2-H. )dY dY2 (3.4)
d€ I k"i 2 eZI

and

'p.-,f " Z1 yP 2 'H1 ) dy 1 dY2

= I , j' S Zy 1 y2 'H 0 dr 1 dy2  (3.5)

where Zli is the decision region Z1 given that y, E X Xe +x I

A "'
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APPENDIX B
PROGRAM LISTING TO CALCULATE PARAMETERS OF THE N AND

THE (N + 1)-LEVEL QUANTIZERS

In this appendix we give a program listing to calculate the parameters of the N

9.' and the (N + 1)-level quantizers in configuration A

C THIS PROGRAM CALCULATES THE OPTIMUM N-LEVEL AND (N+1)-level
- '.c: QUANTIZER PARAMETERS

C FOR A SYSTEM OF TWO QUANTIZERS AND THEIR FUSION CENTER.
C THE RATIO OF COSTS C RANGES FROM 0.1 AND 10
C THE VALUE OF N =2,3,4,5 AND 6.
C THE PROGRAM4 USES THE MODIFIED METHOD OF SUCCESSIVE SUBSTITUTIONS

C
REAL*8 X(9),T(9),XX(9),TT(9) C,S1,52 A B A12,A21,RC1(20),Rl(2)

1,AERR,RERR,ERROR,PD PF, PD1(h0,9 ,6) ,Pgi(26,,96) ,PD2
1,PF2..PDC,PFC,X2,R3(20,2,6) ,X11,DCADER,F1,F2,APD,APF,A1,A2,AP
INTEGER K,N,I,P,N1,N2,M,J,MX
EXTERNAL F1,F2
COMMON X11.,R
DATA C1/10.ODO,9.ODO,8.ODO,7.ODO,6.ODO,5.ODO,4.ODO,3.ODO,2.ODO,

* 11.50D0,
l1.ODO, .90D0, .80D0, .70D0, .G0D0,.50D0, .40D0, .30D0, .20D0.1ODO/
A1=1.ODO
A2=2.ODO
S1=1.ODO
S2=1.ODO
Ri (1)=O.600D0
Ri (2) 0.8000D0
RERRO 0.00
RERRO .OC0lODO

c INITIAL GUESS
XX 1 =-?95000000
XX 2 i.00D0

* -' XX 3 -i.SOOOODO
XX 4 -. 9000D0

XX 5 OO 0D0
XX 6 :009000D0

XX:8 99.9000D0C TT =4.6000D
CX T =23.90000

C TT 3 :1267000D0
* C TT 229000

C T5=190000
C TT6 :1.4000DO

C TT171=1.0900000
C TT 8 =00.5000000
C TT 9 =0.1900000

*C THE FOLLOWING INITIAL VALUES OF TIS CORRESPOND TO THE CASE
C OF CORRELATION COEFFICIENT GREATER THAN A1/A2

TT (9 4.780000

TT (71=2.6700000
TT16 =2.29000D0
TT (5 =1.90000D0
TT (4 =1.49000D0
TT (3 =1.0900000
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TT (2)=00.50000D0
TT (1)=0.19000D0
DO 500 N=2,

WRITE(4,0)
4 DO 60 I=6,9

c INPUT VALUE(S) OF THR CORRELATION COEFFICIENTS
R=0. 10D0*DFLOAT (I)
WRITE(9,61)R

C DO 2OO M=1,20
M 1
C=Ci (M)

c INPUT MAXIMUM NUMBER OF ITERATIONS HERE
MX= 250
K=O

5 K=K+l

I F (K MT:X) GO TO 10
I F (K Nf J
I F (K GT1TN:TT
I F (K G.1XN=XXN
IF (K GT TTN
A=(Sl*XX(2)-KR*S2 TT(i1/(S1*S2*DSQRT((1.ODO-R**2)*2.ODO))

A12=(S2*Al-R*Sl*Afl (S1*S2*DSQRT( 1.ODO-R**2) *20OD0)
A21=(Sl*A2-R*S2*A (S1*S2*SR ((1.OD0-R**2 )*2 ODO))

TT(1)=(A2*A2/2.ODO+DLO( ) LOG(Rc (A)-
1 2.ODO)/(DERFC(A-A12)-2.ODO)))/A2

T(1)=TT(l)
A=(Sl*TT(2)-R*S2*XX(2) )/(S1*s2*DSQRT( (1.OD0-R**2)*2.0DO)

* ~B= S2*T(1 ) R*Sl*XX(2) /S2*Sl*DRT (1.0D0-R**2)7-2. DO))
XX (2)=(Al*A1/2.ODO+DLOG (C)+DLOG( (DERFC(A)-

1 DERFC(B))/ ()DERFC(A-A21)-DERFC(B-A21) ) ))/A1
X(2)=X (2)
IF (N .EQ. 2) GO TO 17
DO 15 P=2,N-1

X(P)=XX(P
A=(S 1*X(P) -R*S2*T(P) )1(S1*S2*DSQRT((l.0D0-R**2)*2.OD0)))
B=(S2-X(P+1)-R*Sl*T(P) )/(S2*Sl*DSQRT((1.ODO-R*-2) 2.ODO)
TT(P )=(A2*A2/2.ODO+DLOG(C)+DLOG( (DERFC(A)-

1 DERFC B))/(DERFC(A-Al2)-DERFC(B-Al2))))/A2'

A=(Sl*T(P+)-R*S2*X(P+1))/(S1*S2*DSQRT((l.OD0-R**2)*2.ODO))
* B;S2!T(P)-R*Sl*X(P+1))/(52*51*DSQRT((1.ODO:R**2)*2.ODO))

is 1 COTNEDERFC(B) / =DRFC(A-A21)-DERF B-A21))))/Al

17 CONTINUE
TT(N) (A2*A2/2.0D0+DLOG(C)+DLOG(DERFC((XX(N)-R*TT(N))/

* 1DS RT( (1.DO-R**2)*2.ODO))
1/DERFC ( XX(N)-A1-R*(TT(N) -A2))/
1DSQRT( (1.0D0 R-*2)*2 .ODO)
1)I A

C CHECKING THE ACCURACY
C INPUT RE QUIRED PRECISION HERE

A=.10d-07
IF((DABS(T(N)-TT(N)) .GT. AP).OR.(DABS(X(N)-XX(N)) GT.

1 AP))GQ TO 5
10 CONTINUE

X (1)=-10.ODO
X (N+ ) =1O.ODO
APD=O.ODO

4 APF=O.ODO
DO 81 Q-1,N

Ai=Th

APD=APD+0. 50D0*DCADRE (Fl ,A ,B, AERR ,RERR,ERROR, IREl)
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IF (IRE1 .NE. 0) WRITE(,6u0.uRa.
APF=APF+.50D0*DCADRE(F2,A B,AERR,RERR,ERROR,IRE1)
IF (IRE1 .NE. 0) WRITE(6,60)IRE1

81 CONTINUE
PD1 (M,I,N)=APD
PF1 (M,I,N)=APF
R~MI No OO+lMj*APF-APD

c QUANTIZER PARAMETERS
DO 120 J=1,N

WRITE(9,62) X(J),T(J)
120 CONTINUE

C WRITE(9,90)
C200 CONTINUE
C WRITE (9,90)
C WRITE (9,90)

*600 CONTINUE
SC WRITE9 (, 90)

C WRITE (9,90)
C WRITE(9,90)
500 CONTINUE

DO 501 J=1,2
DO 502 I11 20

C OUTPUT DETECTION COST
C************w*****w*w * **N=?m6

C OUTPUT PROBABILITY OF DETECTION AND PROBABILITY OF
C FALSE ALARM FOR DIFFERENT VALUES OF N

502 ONTNUEWRITE(8,61) ( PD1(I,J,N) ,PF1(I,J,N) N=2,6)
* 502 CONTINUE

60 FORMiAT ( X,I4,4(1.X FiS.82 *
C90 FORMAT 2X,'CON A ****
61 FORMAT (1X ,1O(lX,F6.4\)
62 FORMT ( X,2(1XF15.8))

STOP
END

FUNCTION FI(X)
REAL*8 X,F1,A1,A2,R,X11,F11,F12
COMMON X11,R
Al11.ODO
A2=2.ODO
F11=DEXP(- (X-Al)**2I2 .000)/

1DSQ2RT(8.ODO*DATAN(1.ODO))

1 (DSQRT(2.ODO* (1 . DO-R**

1 RETURN
END
FUNCTION F2(X)
REAL*8 X,F2,R,X11,F11,F12
COMMION X11,R

* F11=DEXP(-X**2/2 .ODO) /
1DSRT(8.ODO*DATAN(1.ODO))Fl =DERFC((X11-X*R)/

* 1lDSQRT(2.ODO*(1 .ODO-R**2)))
F2=F11*Fl2
RETURN
END

5,. 113

5%/%

or41,. &



APPENDIXC
PROGRAM LISTING TO CALCULATE PARAMETERS OF THE TWO

QUANTIZERS

In this appendix we give a program listing to calculate the parameters of the two

N-level quantizers in Configuration B.

C THIS PROGRAM CALCULATES THE OPTIMUM N-LEVEL QUANTIZER PARAMETERS
C FOR A SYSTEM OF TWO QUANTIZERS AND THEIR FUSIO CENTER.
C THE CORRELATION COEF ICIENT IS ASSUMED TO BE .1ESS THAN Al/AZ.
C FOR THE CORRELATION COEFFICIENT IS GREATER THAN Al/AZ THE
C THE PROGRAM NEEDS SLITE MODIFICATIONS ACCORDING TO THE QD ALGORITHM.
C THE RATIO OF COSTS C RANGES FROM 0.1 AND 10.
C THE VALUE OF N =2,3,4,5 AND 6.
C THE PROGRAM USES THE MOCIFIED METHOD OF SUCCESSIVE SUBSTITUTIONS

REAL*8 X(8),T(8),XX(8),TT(8),Al,A2,Sl,S2,R,T12,T21,AA2,A,B
1,AERR,RERR,ERROR,PD,PF,PD1(20,9,6) ,PFl(20,9,6) ,PD2
1,PF2,PDC,PFC,C1(20) ,A21,A12,C,X2
1,X11 ,DCADER,F1,F2,APD,APF,R3(20,2,6)
INTEGER K,N,I,IER1,IER2,M,P,Q,L
EXTERNAL F1,F2
DATA C1.ODO,9.ODO,8.ODO,7.ODO,6.ODO,5.ODO,4.ODO,3.ODO,2.ODO,

* ll.50D0,
l1.ODO, .90D0, .80D0, .70D0, .60D0, .50D0,.40D0, .30D0, .20D0.1ODO/

COMMON X11,R

C INPIT SIGNALS HERE
A1=4.0D0
A2=2.ODO

C INPIT VARIANCE HERE
S1=1.ODO
S2=1.ODO

C INITIAL GUESS OF THE PARAMETERS
XX 1):;-O.50000D0
XX 2) .800DO
XX 3) =01.50000D0
XX 4) 2.89000D0Xx 5) 03.50000D0
XX =4.09000D0

C********* **************************

C INITIAL VALUES OF T'S FOR CORRELATION COEFFICIENT GREATER THAN Al/AZ
IT1j):;-O.67000D0

TT 3) =01.67000D0*TT 4) 2.89000D0
TT 5) =03.50000D0
TTI =4.89000D0

C INITIAL VALUES OF T'S FOR CORRELATION COEFFICIENT LESS THAN Al/AZ
C PUT T()>T ),,,T

AERR=O.ODO
* RERRO0.OOO10DO

DO 500 N=1,5
DO 11 I=1,2
R=DFLOAT(i-1)*O.250DO
DO 20 M=1,20
C~Cl(m)
K=0
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WRITE(,)K,T1,Tll,TZ,T22

IF (K .GT.100 GO TO 10

DO 25 L1lN

I' -25 CONTINUE +LGDRC(()RX1)
XX(1)= (Al*A1/2.ODO+DLOG(C)DLGERC(l)*X)/

IDSORT( (1.0D0:R**2)*2.0DO))
1/DERFC ((T(l)-A2-R 0 )Al))/
lDS RT( (1.0D0-R**2)*2 .OD))

IF (N .EQ. lj GO TO 1.6

A21:Si*( .R*S*T (SlS2*S1*DRT (l.0DRR*2*) *20M

A1 S21 TT(P)(A2*A2/2.ODO+DLOG C)+DLOG((DER2C(A

1 A=(Sl*X(P+)R52TP- )/(*S2*DS RT((.D /A*2 *2.)

B=(S2*(P)RS*(' ) # 2S*SR(1.ODO-R**2*20D)

XxI=(Al"'Al/2.ODO±DLOG C)+DLOG((Dz.RFC A)-
1DR B))/(DERFC(A-A21)-DERFC(B-A21))))/Al

X(Nl)=l0.OD/ODDLGCDLGERC(N)*T)/

ALos ODO2x2OD
1O A121

1 CONTINUE
PD1MIN) AP
APF (,IN) AP

DO 812 J1,N

WRI=T(9, ()TJ

WITE (9,61)NE 0,() WRT(,PDAP
WRITE 0.0D*CAREF (A61 BERRRARORIF
WITE (6,1) C,. 0(),XI(2,ADAFPDPF

20 CONTINUE

COUTPUT AVSEMAGEACTER
DO 1201 J=N

12O502INUE2

OUPU WROB. O$ DETCTION (2AND RB. FFASAL
CWRITE8,61) APD(,J,),P1IJ,),N1

502 CONTINUE

11 CONT11U

C WRITE..(. ,0) J J., j J-*. ** , S



WRITE(8, 90)
501 CONTINUE
60 FOMT(1X,I2,9(lX,F6.41

90 FORMT! 2X,'CON B
61 FORMAT x 1, 1O(IX,F6.4))
62 FORMAT1(1X,2(1.X,F15.8))

STOP
END

FUNCTION F1(X)
REAL*8 X,Fl,Al,A2,R,Xl1,F11,F12
COMMON Xll,R
Al=4.ODO
A2=2.ODO
F11=DEXP(- (X-Al)**2/z .ODO)/

ID 3R(.ODO*DATAN(1.0D ))
F12DERFC((Xl 2(XA)*
lDQRT(2.ODO*( 1.ODO-R**2)))
F1=F IF12
RETURN
END
FUNCTION F2(X)
REAL*8 X ,F2,R,Xll,Fll,Fl2
COMMON Xli ,R
Fll=DEXP(-X**2/2.0DO)/

1DSQRt (8.0DO*DATAN ( . 000) )
F2DERFC((Xll-X*R)/

lDSQRT(2 .ODQ*(l .0DO-R**2)))
F2=Fll*Fl2

* RETURN
END
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APPENDIX D
PROGRAM LISTING TO CALCULATE PARAMETERS OF THE TWO
QUANTIZERS FOR THE CASE OF EXPONENTIAL DISTRIBUTIONS

C
C THIS PROGRAM CALCULATES THE OPTIMUM N-LEVEL QUANTIZERS OF TWO SEN-
C SOR OBSERVATIONS OF EXPONENTIAL DISTRIBUTIONS
C TO MINIMIZE A GLOBAL SYSTEM RISK FOR FUSION
C SEE CHAPTER IV
C

REAL*8 X(8),T(8) ,XX(8),TT(8),PD,PF,PD1(20,9 6) ,PF1(20,9,6),PD2
1,PF2 PDC PFC,C1 (20) CX2 Xil APD,APF,R3(20,i,6) ,AL,BL,Y
1,APC(20,2) ,AFC(20,25 ,R4(fi,2S ,AD2,AF2,RR2,AP
INTEGER K,N,I,IER1 ,IER2,M,P QL,MX
DATA Cl/50.ODO,40.ODO,30.OD6O.ODO,15.ODO, 1O.ODO,9.ODO,

18.ODO,7.ODO,6.ODO,5.ODO,4.ODO,3.ODO,2.ODO,1.50D0,
11.0O,.9ODO',.8ODO .00.00

C INITIAL VALUES OF QUANTIZER PARAMETERS
C FIRST QUANTIZER

XX 1 =O0.OOOOODO
XX 2 :0.000

X4 =1.89000D0
* XX(5 =02.50000D0

XX(61=3.09000D0
C SECOND Q UANTIZER

T 3101.89000D0
TT 4 =1.5000000
TI 5 =OO.89000D0
TT 6 0O.OOOOODO
DO 500 N=3,6
DO 11 I=1,2

C PARAMETERS OF THE EXP. DISTRIBUTIONS
AL=DFLOAT(I)*O.50D0
DO 20 M=1,20
C~C1 ()
DO 55 P=1,11

TI (P)=DLOG(2.0DO*C)*DFLOAT(N-P+1)/DFLOAT(N)/AL
XX(Nl-P+1)=DLOG(2.ODO*C)*DFLOAT(N-P+1)/DFLOAT(Nl)/AL

55 CONTINUE
K=0

5 K=K+l
DO 89 PP=1,N

T (PP) TT (PP)X (Pp) XX (PP
*89 CONTINUE

*C INPUT MAXIMUM NUMBER OF ITERATIONS
MX=200
IF (K .GT.MX) GO TO 10

*C XX(1=DLOG(2.OD0*C)/AL-TT(1)
X (1)=O.ODO
TT( = (DLOG(DEXP(-AL*XX(l))+DEXP(-AL*XX(2)))+DLOG(2.ODO*C))/AL

*DO 15 P=2 N-1
XX(P) (DLOG DEXP ( AL*TT(P ))+DEXP ( AL*TT(P+i))) +DLOG(2.ODO*C ))/AL
TT(P )= DLOG( DEXP ( AL*XX(P )+DEXP ( AL*XX( P 1 ))+DLOG(2 0DO*C)) AL

15 CONTINUE
XX(Nl)=(DLOG(2.0DO*C)+DLOG(DEXP(TT(N))+DEXP(-AL*TT(N-1))))/AL

C TT(N)=DLOG(2.0DO*C)/AL-XX(tN)
TI (N) =0 ODO

C ACCURACY CHECKING

117



C INPUT PRECESSION HERE
AP=O.10d-O5
IF<(DABS(XX(N)-X(N)) G.A)O.DB(Tl-~) T

10 1CONTINUEAP.R(AST()(1) G.
WRITE(8,60) K

BL=2.ODO '4AL
APD=O.ODO
APF=O.ODO
DO 81 0=1,N-1
APD=APD+DEXP ( AL*TT (Q))* (DEXP ( AL*XX (Q) )-DEXP ( L*X(Q~i
APF=APF+DEXP (-BL*TT (Q DEX? -BL"*XX (Q) -DEXP ( BL*XX (Q+l

81 CONTINUE
APD=APD+DEXP (-AL*Xff(N)) *C
APF=APF+DEXP (-BL*X ()
APC (M,I)=(l.ODO+DLOG (4OOC /(4.ODO*C)
AFC (MI)=(l.ODO+DLOG (4.ODO*C )**2))I( 4.ODO*C)**2

PDI (M,I,N)=APD
FF1 (M,IN)=APF

R3 (HI N)1 .ODO+C1(M)*PFI(M IN)-PDI(MI,N)
R4 (M I=1 .0DO+Cl(M)*AFC(M,I5-AFC(M, I)

DO 120 J=1 N

C OUTPUT Q UANTIZER PARAMETERS
WRITE(9,62) XX(J),TT(J)

120 CONTINUE
WRITE(9,90)

20 CONTINUE
11 CONTINUE

WRITE(9,90)
aC WRITE(9,90)
* WRITE(8,90)

500 CONTINUE
DO 501 J=1,2
DO 502 I=1,20
AP2=1.ODO/(2.ODO*Cl(I))
AF2=AP2**2
RR2=1. .ODO-C (I) *AF2..AP2

C OUTPUT DETECTION COST
WRITE(1O,61) C1(I),RR2,( R3(I,J,N) N=3,6),R4(I,J)

C OUTPUT PROB. OF DETECTION AND PROB. OF FALSE ALARM

1,AFC(I.J)
502 CONTINUE

WRITE(8,90)
501 CONTINUE
60 FORMIAT(1X,I6,9(lX,F6.4))****
90 FORMIAT 2X,'CON B ***w
61 F 1HA~ X,10(IXF6 4B62 FRA X3l,1:

STOP
END
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APPENDIX E
PROGRAM LISTING TO CALCULATE PARAMETERS OF THE TWO

QUANTIZERS FOR EXAMPLE 3, CHAPTER IV

C THIS PROGRAM CALCULATES THE OPTIMUM QUANTIZER PARAMETERS OF TWO
C N-LEVEL OUANTIZERS IN ORDER TO MINIMIZE A GLOBAL SYSTEM RISK FOR

*C DETECTION OF SIGNALS WITH DIFFERENT VARIANCE. N=3 , N=5.
c Si = SIGNAL VARIANCE UNDER Hi
c SO = SIGNAL VARIANCE UNDER HO
c Ti QUANTIZATION POINT FOR N=3( Ti ,-Ti
c XiX2 QUANTIZATION POINTS FORN=5 (Xi,X2,-Xl,-X2)
c CJ(2O) ARRAY OF RATIO OF COSTS
c K = Numiber of iterations.

REAL*8 T1,Tll,Si,S2,R,C,X2,PD,PF,C1(15) ,Z31,Z2i,X3,X33,X22
1,TS,SSS,TTT(10),Xl,PD3,PF3,PDC,PFC,R2,R3,RC
INTEGER K,N,Ki
DATA Ci/Oi.ODO,..900D0,.800D0,.700D0.60D0,O.50D0.40D0
10.30D0.20D0.1ODO,.090DO,.080DO,.070D0.060D0.050D0/
Sl1l.ODO

- S0=DSQRT(2.ODO)
c INITIAL VALUES OF THE QUANTIZER PARAMETERS

T1=01.i58O0DO
Xl=01.15800D0
X2=OO.15800D0

* WRITE (6,60) K,S1,SO,C
WRITE (9,60) K,S1,SO,C
WRITE (8,60) KS1,SO,C
SSS=(1.ODO/SO**2-1 .ODO/Si**2)/2.ODO
DC i01 N=2,2
DO i00 I1,15

K=0
5 K=Ki-1

IF (K .GT.100) GO TO 10
TlliTi
TS=(DLOG(Sl/SO)+

1DLOG(C)+DLOG( (DERF(T1/DSORT ,2OO
C 1/SO))/(DERF(Tl/DSQRT(2.O0) )Si)) ) DFLOAT(N-1))/SSS
C IF (TS .GT. 0.ODO) T1=DSQRT(TS)

Ti=DSQRT(DSQRT(TS))
IF((DABS(TI-Tli) .GT. O.iOD-05)) GO TO 5
CONTINUE

10 TTT(N)=Tli
Kl=O

IF (K1. GT.100) GO TO 15
X33=X3

* X22=X2
X2=(DLOG(Si/SO)+

1DLOG(C)+DLOG((DERF(X3/DSQRT 2iODO /SS
C IF (TS .GT. O.ODO) Ti=DSQRT(TS)

X2=DSORT(X2)
Z30=DEr ( 3/DSQRT (2.OD " /5Z2O=DER (X2/DSQRT 2 2ODO) /20Z3i=DERF QX/DSQRTfi2.0D0) IS))
Z21=DEF ( X2/DSRT (2.ODO /51).
X3=(DLOG (Si/SO) +

iDLOG(C)+DLOG( (Z30-Z2'0)/(Z31-Z21)))/SSS
X3=DSQRT(DABS(X3))
IF(((DBSU<2-X22 GT. -O-5)O.(DB(3X3 T

10.10D-05))) GOfTO 55 0.O-5) O.(DB(-3).T
CONT INUE

15 TTT(N)=T1l
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TS=-DLOG(SO**2/S1**2/C) /SSS ~
PDC=1.ODO-DEXP ( TSI (2.ODO*S1*S1))
PFC=1.ODO-DEXP ( TS/ (2.ODO*SO*SO))

WRITE(6,6O K,T1,T11
PD=DERF (Tl1/DSQRT2 (2ODO )/51)**N
PF=DERF (Tl1/DSORT( 2.ODO )/SO) **N

R2=i.ODO+C'T F-PD
PD3=(DERFkX22/DSQRT(2.ODO)/Sl)*2.ODO-DERF(X33/DSQRT(2.ODO)/Sl))

1 *DERF(X33/DSQRT(2 % /Si)
.1 PF3=(DERF(X22/DsQRT(2 .ODO)/SO)*2.ODO-DERF(X33/DSQRT(2.ODO)/SO))

1 *DERF(X33/DSQRT(2. ODO) /S0)
R3=1.OD 0+C*PF3-PD3
WRITE (860)N,PDC,PFC,PD,PF,PD3,PF3
WRITE (10,60) NCR2 R3,RC

C IF ((I .EQ 1) 1R (' EQ. 10 )) WRITE(1O,60)N,C,R2,R3,RC
WRITE(6,60)N,C,TTN) ,PO, PF,PD3,PF3

100 CONTINUE
101 CONTINUE
60 FORMAT(1X,I3,6(1XF1O.7))

STOP
END
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APPENDIX F
LINEAR MINIMUM MEAN SQUARE ESTIMATE OF Yl

Having I =[ Ylq Y2 I' the LMMS estimate of y1 and the corresponding mean
square error are given by [341:

A

Y = E{y 1  
t }E{ !p'-Il (F.1)

and

Efe 2 4 = Eyq2 )-E{y yt 4E{_ _' }. E{I yl (F.2)

where

E{Yt l' = [ E{Yj Ylq ) EfY, Y2  I1 (F.3)

and

E E(Z Z') = E{Y2 q } E{ Ylq Y2 (F.4

- ~E{Y2 Ylq ) E{y 2
2 4 J

The entries of these matrices are:

Efy, Yq 4 Q EP Q y E 4Qj (F.5)
I N

=3 P. Qj C.

but
NE{YY"}Y i qy =Qj} (F.6)

but EYY~=PQE
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E(y2 /YIq - Q, }= E{y2/ y, }/YIq = Qj } (F.7)

For the case where y! and y. are jointly gaussian, we can write

E(Y2 Yjq }P O'l a2 ir P. Q. C./a12  (F.8)

bI I

E{Y2 Yq }=P 1 2 It (F.9)

-!

E(YIq, } (F.10)

=* 1 - 2

V 1

* Inserting these in (F. I ) and (F.2) and performing matrix multiplications yields

A 0
""1 = ~1- p2 )lIYTq 2 a )y ,(q .I2 p) (6.2)

and

E{e 2 } =1"2 (l-p 2 )(1-o ),,(1.p 2 o ) (6.11)

where (0 is given by:

0 =A2, ,q. (6.12)

@
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APPENDIX G
SOLUTION OF THE LLOYD-MAX QUANTIZER PARAMETERS BY

THE METHOD OF SUCCESSIVE SUBSTITUTION

1. INTRODUCTION

The minimum distortion quantizer parameters [18,231, as well as parameters

based on other criterion such as quantizers for signal detection [41], minimum risk
quantizers and quantizers for LMMS estimation trror dealt with in this thesis, can be

solved by Max's trial and error technique [18]. There are also many other

approximation methods to calculate the quantizer parameters [42], [43] and [441.

In this Appendix we apply the method of successive substitution and its

modifications [19] to solve for the Lloyd-Max quantizer parameters. It is more accurate
and computationally more efficient than the previously reported methods. It is shown

to easily generate 7 bit (128 level) optimum quantization.

2. STATEMENT OF THE PROBLEM

The Lloyd-Max minimum mean square distortion quantizer problem deals with
transforming a random variable X of differentiable probability density function fqx)

into the N-level discrete random variable Y.

Y(X)= Yi for X e [xi ,xi (G.I)

The optimum parameters minimize the distortion D

ix

with

.0 =X < x2  _S ... < XN < x + I --

Differentiating D with respect to xi and yi yields the following necessary conditions of

optimality

x. (v- + v- ),12 i= 2 ,3 ,. . .N  (G 3)

1
;a0123



Yi = (" xf(x)dx)/(j" Xi + 
1 f(x)dx ) ,i = 1,2,..N (GA)x i.X

a set of simultaneous equations of propagating character. That is, if Yl is chosen
correctly then x2 can be calculated from (G.4 ), Y2 from (G.3 ), x3 from (G.4 ) and so
forth [18]. In this case the value of yN calculated from (G.3 ) must agree with its value
calculated from (G.4 ) with xN+l = . This was the core of Max's trial and error
algorithm; to pick a value for Yl and calculate the parameters up to and including yN
which must agree with the value of y. calculated from (G4 ), otherwise, to pick
another value of y1. Let us put the system of equations in the form

(Z z) (G.5)

where Z is a 2N- I vector given by:

z- Y x, . ..... Y it  (G.6)

and apply the iterative substitution

Z. G(_7 old  (G.7)

with a suitable initial guess. The convergence is guaranteed if 0 Gk 1) Z. is sufficiently

small for every kj= l,2...., N-I [19]. From (G.4)

G. v. =[(x.+ -y. )ftx. +1 + (y. -x. )fRx )],(2P ) (G.8)-J.J+'.J J

where P. is the probability the input of the quantizer is in the interval.

p. j+1 ffx)dx. (G.9)

• The numerator in (G.8) is an approximation of the integral in (G.9) by the
trapezoidal rule with the subdivision [xi ,y , x+ 1, so the value of the derivative is
verV likely less than one. Also, substituting for v. and y in (G.3) from (G.4) and

differentiating with respect to x. it is easily to show that
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8 G /8 x. =(y. -x. )fRx. )/(2P.)+ (x -Y,_1 )f(x. )/2P._, (G.10)

which is less than (0 G. ,/8 y.). The method can be more efficient if we use the updated

values in the same iteration. In this modification of the method the best current

values of the parameters are used. This choice may also enhance convergence. The

method also avoids the tedious calculation of the upper limit of the integral to solve for

the next x. in (G.4).

3. NUMERICAL RESULTS

We have solved for the quantizer parameters for a gaussian random variable of

zero mean and unit variance for several values of N up to 128. Also the mean square

error D and the output entropy (-Y-k Pk lg 2 (Pk )) have been calculated. The results

presented in Table 4 show that in several cases Max's results, which were only

available up to N = 36, are not accurate in the last digit.

Key to Table 4

The numbering in the table is as follows.

S1. For N even, each table begins with the (N/2+ l)Lh parameters. In this case the
(N'2+ 1)t value of x is zero.

2. For N odd, Each table begins with the (N,'2 + 2)th parameters. In this case the
(N;2+ 2)th value of y is zero.

Negative parameters can be calculated from the symmetry relation

Xi =Xn-+ 2  (G.11)

and

- 2- Yn - " (G .12)

0 A FORTLAN program to calculate the parameters ,distortion and entropy

follows Table 4. The only input to the program is N, the number of quantization levels.
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TABLE 4
MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION

N = 2 N= 7
J x Y J x Y
2 0.000000 0.797885 4 -0.280289 0.000000
- 5 0.280288 0.560577

ERROR = 0.363380 6 0.874362 1.188147
ENTROPY = 1.000000 7 1.610758 2.033369
N = 3 ERROR = 0.044000

J X Y ENTROPY = 2.646931

2 -0.612003 0.000000 N = 8
3 0.612003 1.224006
---- J x Y

ERROR = 0.190174
'-4 ENTROPY = 1.535789 5 0.000000 0.245094

6 0.500550 0.756005
* N = 4 7 1.049957 1.343909

8 1.747927 2.151946
J x Y ------- ------ - --- - -

---- --- ---- --- ---- --- ERROR = 0.034548
3 0.000000 0.452780 ENTROPY = 2.824865
4 0.981599 1.510418

N= 9ERROR = 0.117482 --------------------------
ENTROPY = 1.911099 J X Y

---------------------------------

N 5 5-0.221819 o.oooooo
- --" 6 0.221819 0.443639
J X Y 7 0.681217 0.918796---- 8 1.197594 1.476392
"3 -0.382284 0.000000 9 1.865528 2.254664
4 0.382284 0.764567 ....................
5 1.244357 1.724147 ERROR = 0.027853--- ENTROPY = 2.982695

ERROR = 0.079941
ENTROPY = 2.202916 N = 10

--------------------------
N6 1 X Y

---------------------- --------------------------
J X Y 6 0.000000 0.199623-------- ----------------- 7 0.404740 0.609857

. 4 0.000000 0.317716 8 0.833841 1.057825
5 0.658911 1.000106 9 1.324583 1.591340
6 1.446850 1.893595 10 1.968218 2.345096

----- -------------------------- --------------------------
ERROR = 0.057978 ERROR = 0.022937ENTROPY = 2.442789 ENTROPY = 3.124584

Il,
-'
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TABLE 4

MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)

N1 N= 14

J x Y J x Y

6 -0. 183729 0.000000 8 0.000000 0.145706
7 0.183729 0.367458 9 0.293513 0.441321
8 0.559913 0.752367 10 0.595882 0.750443
9 0.965597 1.178826 11 0.918039 1.085635
10 1.435733 1.692639 12 1.276582 1.467528
11 2.059193 2.425746 13 1.703070 1.938612

14 2.281837 2.625062
ERROR = 0.019220
ENTROPY = 3.253506 ERROR = 0.012232

ENTROPY = 3.582050
N 12-- - - - - - -- - - - - - N =15

--J X Y J X Y
7 0.000000 0.168438
8 0.340142 0.511846 8 -0.136929 0.000000
9 0.694313 0.876779 9 0.136928 0.273857
10 1.081245 1.285711 10 0.414310 0.554764
11 1.534371 1.783030 11 0.702949 0.851134
12 2.140733 2.498435 12 1.013007 1.174879

- 13 1.360468 1.546057
ERROR = 0.016340 14 1.776266 2.006474
ENTROPY = 3.371666 15 2.343670 2.680866

N = 13 ERROR = 0.010737
ENTROPY = 3.676630

-J X Y --- -- - - -- - -N = 16
7 -0.156887 0.000000
8 0.156887 0.313773 J X Y
9 0.476012 0.638251
10 0.812600 0.986949 9 0.000000 0.128395
11 1.184106 1.381263 10 0.258222 0.388048
12 1.622890 1.864518 11 0.522404 0.656759
13 2.214522 2.564525 12 0.799550 0.942340

13 1.099286 1.256231
ERROR = 0.014063 14 1.437139 1.618046
ENTROPY = 3.480744 15 1.843532 2.069017

16 2.400803 2.732590

ERROR = 0.009501

ENTROPY = 3.765328
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TABLE 4
NIAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)

I I onpo t-- I mm 1 mm
I I I 0-irkw - M I "pv-4 11 1 I r~~ O 41: ~- I OW
I I I0O0cc V),_cq)nr-,coi cof I I w~wmwmt~w- i N
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TABLE 4

MAX'S QUANTIZER PARAMETERS FOR THE NOR.MAL DISTRIBUTION (CONT'D.)
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4
TABLE 4

MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D)

----------------------------"------2 N = 27
---------------------------------- N---2--------------------------------- J x YJ x Y J X -14 -0.077781 0.00000013 -0.083805 0.000000 15 0. 077780 0.155561
14 0.083805 0.167610 16 0.233975 0.31238915 0.252208 0.336806 17 0.392106 0.47182316 0.423045 0.509283 18 0 553594 0. 63536417 0.598128 0.686972 19 0. 720073 0. 80478218 0.779592 0.872212 20 0. 893532 0. 98228119 0.970115 1.068019 21 1. 076518 1. 17075620 1.173279 1.278540 22 1.272495 1. 37423521 1.394213 1.509886 23 1.486469 1.59870422 1.640881 1.771876 24 1.726267 1.853829
23 1.927050 2.082224 25 2.005461 2. 15709324 2.280667 2.479110 26 2.351670 2.54624725 2.778634 3.078159 27 2.840977 3.135707
---- -------------------------------- 2 .497 3150ERROR = 0.004041

ENTROPY 4.384064 ERROR = 0.003483ENTROPY = 4.491610
N = 26 - - - - - -" --- N = 28."J x yJxY

- --------------------------- - - x Y14 0.000000 0.08059315 0.161536 0.242480 15 0.000000 0.075012
16 0.324498 0.406516 16 0.150307 0.22560217 0.490402 0.574288 17 0.301760 0.37791918 0.660961 0.747635 18 0.455569 0.53321919 0.838229 0.928823 19 0.613076 0.692934920 1.024813 1.120803 20 0.775854 0. 85877521 1.224230 1.3"7657 21 0.945836 1.03289722 1.441544 1.555432 22 1.125522 1.218147
23 1.684648 1.813865 23 1.318326 1.418505
24 1.967207 2.120549 24 1.529205 1.639905
25 2.316997 2.513445 25 1.765925 1.89194526 2.810502 3.107559 26 2.041975 2.19200526 285 27 2.384821 2.577637

ERROR = 0.003746 28 2.870169 3.152701
ENTROPY = 4.438843

--- ERROR = 0.003246
ENTROPY = 4.542507
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TABLE 4
MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)

N = 29 N = 31---------------------------------- -------------------------
J x Y J x Y
--" 16 -0.068008 0.000000
15 -0.072566 0.000000 17 0.068008 0.13601616 0.072566 0.145132 18 0.204446 0.272876" 17 0.218211 0.291291 19 0.342170 0.411464
18 0.365424 0.439557 20 0.482101 0.552739
19 0.515338 0.591119 21 0.625267 0.69779420 0.669236 0.747352 22 0.772858 0.847921
21 0.828638 0.909923 23 0.926315 1.004710
22 0.995431 1.080939 24 1.087456 1.17020223 1.172074 1.263209 25 1.253670 1.347138
24 1.361940 1.460671 26 1.443261 1.53938525 1.569941 1.679211 27 1.646065" 1.752745
26 1.803788 1.928364 28 1.874694 1.99664327 2.076890 2.225415 29 2.142413 2.288184* 28 2.416571 2.607727 30 2.476285 2.66438529 2.898177 3.188627 31 2.950981 3.237577
------------------------------------

ERROR 0.003032 ERROR = 0.002664
ENTROPY = 4.591663 ERRO4

------- ENTROPY = 4.685201
N = 30

-- -- -- -- -- -- -- -- -- --N = 32
-J x y

16 0.00c000 0.070155 1 0 0
17 0.140542 0.210928 17 0.000000 0.06589018 0.282019 0.353110 18 0.131971 0.198052
19 0. 425412 0.497714 19 0.264715 0.33137820 0.571795 0.6458/6 20 0.399039 0.466699
21 0.722402 0.798927 21 0.535816 0.60493422 0.878709 0.958490 22 0.676035 0.74713623 1.042565 1.126640 23 0.820850 0.894565
24 1.216393 1.306147 24 0.971674 1.048783
25 1.403530 1.500912 25 1.130294 1.21180425 1.608846 1.716779 26 1.299072 1.38634027 .840001 1.963224 27 1.481284 1.57622828 2.110332 2.257440 28 1.681731 1.78723329 2.44717 2.636614 29 1.907981 2.028728
30 2.925088 3.213562 30 2.173234 2.317739

31 2.504429 2.691120ERROR =-0.002839 32 2.975926 3.260732ENTROPY = 4.639193- -------------------------

ERROR = 0.002505
ENTROPY = 4.729784

q .
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TABLE 4

MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONTD)

N = 64-----------------------------------------J X Y
------------------------- x--------------
33 0.000000 0.033409
34 0.066844 0.100278
35 0.133787 0.167297
36 0.200932 0.234567
37 0.268380 0.302193
38 0.336238 0.370283
39 0.404616 0.438950
40 0.473632 0.508314
41 0.543408 0.57-8503
42 0.614079 0.649655
43 0.685789 0.721922
44 0.758695 0.795468
45 0.832972 0.870476
46 0.908816 0.947155
47 0.986446 1.025736
48 1.066112 1.106488
49 1.148104 1.189720
50 1.232757 1.275794
51 1.320468 1.365141
52 1.411709 1.458276
53 1.507054 1.555831
54 1.607210 1.658589
55 1.713065 1.767542
56 1.825759 1.883977
57 1.946794 2.009611
58 2.078211 2.146810
59 2.222896 2.298981
60 2.385143 2.471305
61 2.571789 2.672274
62 2.794840 2.917407
63 3.078922 3.240437
64 3.492269 3.744101
------------------------------------------

ERROR = 0.000644
ENTROPY = 5.710078

I
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TABLE4
MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)

N = 128

- - ---- ----------------

6 0033659 O C5049067 0.067331 0.084172
68 0. 101029 3. 117886
69 0.134765 O . 151644
70 0. 168552 0. 185460

% 71 0.202404 0.29347
0 26 0'353 . 2533.9

73 0. 2'0353 0. 297397
4 0.304477 032156775 0. 336720 0. 355874

76 0 373097 0 3190720
7 0 407620 0. 424921

0. 442307 0.459693", 477171 0.49465180 0. 529812
8,0.882 0 01 0. 50519

8 0 870.1 0.600810
3 0. 618747 0. 63668484 0. 654758 0.67283385 0. 621055 0: 7092778. 0."27658 0746039
87 0. 764589 0.'83139ae 0.801971 0.8-06C2
.9 0.839528 

0.58454
90 0.877587 0.896719

91 0916074 o,93842892 0955019 .7 4609"%93 0.945 .014296
1 034409 1.0545234' 

95 1.074?24 1.095326
95 1.11r.037 1367477 1. 157789 .7,
99 1.200223 221517
99 1. 243391 1. 265165
102 I. 257346 1.30952710: 1.332146 1,354766102 1.377r,57 I. 400948.
1C3 1. 424548 1. 448143
104 1.472299 1.496450
105 1. 521196 1. 545913
lo 1. 571339 1. 5)6733

If' 1. 622933 1. 642933.3 1. 671,905 1 .7.';67 7*i,110 1 71b 5 I -I1 i. 726 -59 1 e54
-

1.845085 18747G2112 -.9055e3 1? 36,104
113 1. 9'53 2. U00oU1
1 2. 034,36 2.0t76712. '133 2. 12799i
116 2- 175LII 2.2'02'
1-i , 22 118 2 92C331 1 2 3. 1 2. ,-1 -62 251 > . ";73,":

74 . 6 3 .
lS 3 .4d53? 3.231--3j126 3 3Y:,b31 3 41743)
! 

"  
.5911i33 3. 73493,9

1" I8 3 962315 4. 189,94

E R ' = 0 000163
ElITFC = 6. 69953

O,"
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4. PROGRAM LISTING TO CALCULATE THE LLOYD-MAX QUANTIZER
PARAMETERS

C THIS PROGRAM CALCULATES LLOYD-MAX QUANTIZER PARAMETERS BY THE METHOD
C OF SUCCESSIVE SUBSTITUTION FOR THE NORMAL DISTRIBUTION OF ZERO MEAN
C AND UNIT VARIANCE
C The INPUT TO THE PROGRAM IS
C 1 THE NUMBER OF QUANTIZATION LEVELS N
C 2 THE MAXIMUM NUMBER OF ITERATIONS M
C 2 THE ACCURACY AP
C

REAL*8 X(199),T(199),XX(199),TT(199),C ,DELTA,AP(199),AP
1,ERROR,ENTROP
INTEGER K,NI,P,N1,N2,N3,M
C=DSQRT(OO.50DO/DATAN(1.ODO))

C DO 99 N=1101110

C INPUT THE NUMBER OF QUANTIZATION LEVELS
N=100
WRITE (9,65) N
WRITE (9,66)
WRITE (9,67)
WRITE(9,66)

C INITIALIZATION OF THE QUANTIZER PARAMETERS
C

DELTAO.0150D0*DFLOAT(N)
XX ()=-10.50000DO
TT(I)=-5.50000DO
TI =TTM

• DO 50L=2,N

TT(L)=TT(L-1)-DELTA
XX( L )=(TT(I) TT(I-1))/2.ODO
X (L)=XX(L)
T(L)TT(L)

50 CONTINUE

C BEGINING OF THE ITERATIONS
c M = MAXIMUM NUMBER OF ITERATIONS

M = 1050
K=0

S K=K+1
IF (K .GT. M) GO TO 10
IF (K .GT. 1)X(N)=XX(N)
IF (K .GT. 1)T(N =TT(N)

TT(1)=-C*DEXP (-XX 2)*XX(2 /2.0DO)/(DERFC(-10.0DO)-
1DERFC(XX(2)/DSQRTi2.0D0)))
T(1)=TT(1)

* IF ( N .EQ. 2 ) GO TO 17
DO 15 P=2,N-1

*. XX(P)=(T(P)+T(P-1))/2.ODO
X(P)=XX(P)
TT(P)=DEXP(-X(P)*X(P)/2.ODO)-DEXP(-X(P+I)*X(P+1)/2.ODO)

* TT(P) TT(P)*C/(DERFC(X(P)/DSQRT(2.ODO))-DERFC(X(P+1)/DSQRT(2.0
1 ODO)))=

T(P =TT(P)
-15 CONTINUE
17 CONTINUE

XX(N)=(TT(N)+T(N-1)) /2.ODO
." TT(N)=DEXP(-XX(N)*XX(N) 2.ODO)*C/DERFC(XX(N)/DSQRT(2.0D0)): X(N)=XX (N)

TN =TT(N)
N=IDINT(DFLOAT((N+2)/2))
Nl=IDINT(DFLOAT (N+1 /2

C CHECKING THE PRECISION OF THE SOLUTION
c AP = REQUIRED ACCURACY

AP=O.1OD-6
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IF ((MOD (N,2) .EQ. 0).AND.(DABS(X(N2)).GT. AP))GO TO 5
IF (MOD (N+1,2) iEQ. O)AND. (DABS(T(N1)).GT. AP))GO TO 5

CONTINUE
10 CONTINUE

C OUTPUT RESULTS
IF (MOD (N',2) .EQ. O)N3=N2
IF (MOD (N+2. 2) .EQ. O)N3=Nl
WRITE(6,605 K
DO 120 J1l,M3

4.4,4.IF (J .EQ. 1)
1 WRITE(9,71)J, T(J)

IF (J .GT. 1)
1 WRITE(9,61)J, X(J),T(J)

120 CONTINUE
X(N+1)=1O .ODO
X(1)=- O.ODO
ERROR=O.ODO
ENTROP=O.ODO
DO 222 I=1,N

AP~l =DERFC,$X(I)/DSQRT(2.ODO) )-DERFC(X(I+1)/DsQRT(2.ODO))

ERROR=ERROR+AP(I) *T(I)**
222 ONTNUEENTROP=ENTROP-AP (I)*DLOG(AP(I) )/DLOG(2.ODO)

ERROR=1.ODO-ERROR

WRITE9,262 ERROR
WRITE(96
WRITE 3,63 ENTROP

* WRITE19,66
WRITE 6,72 K

,1WRITE 9,901
WRITE 9,66

C99 CONTINUE
65 FORMAT 37:' N 1 ,17)
66 FOR11AT 3 2, -7-----------------------)
67 FORM'AT 3X'JXY
60 FORM'AT iXi7,8(IX,F6.4))
90 FORMAT(2,------------------------
61. FORIIAT N1X,4, 22,F9.6))

*71 FORMAT 1X,14,11X, 2(2X,F9.6))
-~62 FORMAT 7X,'ERROR =', 2(lX,F9.6))
.472 FORMAT 3X,'# ITERATIONS = 1,17)

63 FORMIAT17X, 'ENTROPY =,2(lX,F9.6))

STOP
END

113

- . . . . . . .



W | M1

LIST OF REFERENCES

[1.] Lawson, J. "An Elementary Theory of Surveillance," Naval Electronics System
Command, Technical Report, Aug. 1978.

[2.] Betsekas, D. P., TsitsiklisJ. N. and Athans, M., 'Convergence Theories of
Distributed Iterative Process: A Survey," Laboratory of Information and
Decision Systems, MIT, Report No. LIDS-P-1342, Dec. 1983.

[3.1 Yemini, Y. and Lazer, A., " Towards Distributed Sensor Networks, an Extended
Abstract," Proceedings of Information Sciences and Systems, 1982, pp. 198-302.

[4.] Lauer, G., and Sandell, N. R. "Distributed Detection of Known Signal in Noise,"
Report 160, ALPHATECH, Burlington, Mass., Mar. 1982.

[5.1 Tenney, R. R., and Sandell, N. R. "Detection with Distributed Sensors," IEEE

* Trans. on Aerospace and Electronic Systems, vol. ASE-17, 4, Jul. 1981, pp.
. 501-510.

[6.1 Van Trees, H. L., Detection, Estimation, and Modulation Theory-Part I, Wiley and
Sons, New York, 1969.

[7.] Sarma, V. V. S., and Rao, K. A. Gopala, "Decentralized Detection and
Estimation in Distributed Sensors Systems," In Proceedings of the IEEE
Cybernetics and Society Conference, vol-l, 1983, pp. 438-441.

[8.] Chair, Z., and Varshney, P. K., "Optimal data fusion in multiple sensor detection
systems," IEEE Transaction on Aerospace and Electronic Systems, vol. AES-22, 1,

Jan.1986, pp. 98-101.

[9.] Reibman, A. R. and Nolte, L. W. "Optimum Detection and Performance of
Distributed Sensor System," IEEE Transaction on Aerospace and Electronic
Systems, vol. AES-23, 1, Jan. 1987, pp. 24-30.

[10.] Ekchian. L. K., Optimal Design of Distributed Detection Networks, Ph.D.
Dissertation, MIT, Sep. 1982.

[11.] Ekchian, L. K. and Tenney, R. R., "Detection Networks," Proceedings of the 21st
Conference on Decision and Control, 1982, pp. 686-691.

136
Ot-"'



[12.] Papastavrou, J. D. and Athans, M., "A Distributed Hypothesis-Testing Team
Decision Problem with Communications cost," Proceedings of the 25st Conference
on Decision and Control, Athens, Greece, Dec. 1986, pp. 219-225.

[13.] C. H. Papadimitriou and K. Steigliz, Combinatorial Optimization: Algorithms and
Complexity, Englewood Cliffs, NJ: Prentice-Hall, 1982.

[14.] Tsitsiklis, J. N. and Athans, M., "On the Complexity of Decentralized Decision
Making and Detection Problems," IEEE Trans. on Automatic Control, vol.
AC-30, No.5, May 1985, pp. 440-446.

[15.1 Kovatana, T., "Theoretical analysis of instruction alarm using two
complementary sensors," Final Technical Report, Stanford Research Institute,
Menlo Park, Calif., Feb. 1973.

[16.1 Fefjar, A., "Combining techniques to improve security in automated entry
control," In Proceedings of the 1973 Carnahan Conference on Crime
Countermeasures, May. 1978.

[17.] Stearns, S. D., "Optimal detection using multiple sensors," Proceedings of
* Carnahan conference on security technology, Uxington, KY, USA, 1983.

[18.] Max, J., "Quantization for Minimum Distortion," IRE Trans. on Inform. Theory,
vol. IT-6,1960, pp. 7-13.

[19.1 Pearson ,C. E., Numerical Methods in Engineering and Science, Van Nostrand
Reinhold Company, New York, 1986, pp. 11-12 and 49-50.

[20.] Wozencraft, J. M. and Jacobs, I. M., Principles of Communication Engineering,
Wiley, New York, 1967.

[21.] E. K. AI-Hussaini and A. M. AI-Bassiouni, "Performance of an ideal switched
diversity receiver for NCFSK signals with Nakagami fading," Trans. IECE Japan,

K-,: vol. E65, Dec. 1982, pp. 750-751.

[22.1 E. K. Al-Hussaini and A. M. Al-Bassiouni, "Performance of MRC diversity
• Systems for the detection of signals with Nakagami fading," IEEE Trans. on

Commun. vol. COM-33, No. 12, Dec. 1985, pp. 1315-1319.

[23.] Lloyd, S. P., "Least Squares Quantization in PCM," Unpublished Bell
-. Laboratories manuscript, July, 31, 1957; also in IEEE Trans. on Inform. Theory,

.- vol. IT-28, pp. 129-137, 1982.

*-K [24.] Moose.P M and A1-Bassiouni.A.M "Solution of the Lloyd-Max Quantizer
Parameters by the Method of Successive Substitution," Naval Postgraduate
School Technical Report No. NPS 62-88-004.

137

0



[25.1 Anthony D. Walen, Detection of Signal in Noise, Academic Press, 1971, p. 366.

[26.] Sandell, N R., Jr., Variaya, P. C. Athans, NI. and Safonov, M. G., "Survey of
Decentralized Control Methods for Large Scale Systems," IEEE Trans. on
Automatic Control, vol ,AC-23, 1978, pp. 108-128.

[27.] Yu-Chi Ho and K Al-Ching Chu, "Team Decision Theory and Information
Structures in Optimal Control Problems- Part I," IEEE Trans. on Automatic
Control, vol. AC-17, No. 1, Feb. 1972.

[2S.] Yu-Chi Ho and K Al-Ching Chu, "Team Decision Theory and Information
Structures in Optimal Control Problems- Part I," IEEE Trans. on Automatic
Control, vol. AC-17, No. 1, Feb. 1972.

[29.] Yu-Chi Ho and Marcia P. Kastner, "Teams, Signaling and Information Theory,"

IEEE Trans. on Automatic Control, vol. AC-23, No. 2, April 1978, pp. 305-312.

[30.1 R. Srinivasan, "Distributed Rader Detection Theory," lEE Proceedings, vol. 133,
F. No. 1, Feb 19S6. pp. 55-60.

S[3 I.] David A. Castanon and Demosthenis Teneketzis, "Nonlinear Data Fusion," Proc.
1952 MIT O.VR Workshop on Command and Control, Monterey. CA, August
1982. pp. 224-230.

."32.] G. S. Lauer, D. Teneketzis. D. A. Castanon and N. R. Sandell, Jr. "Recent
Advances in Distributed Detection," Proc. 1982 MIT. OAR Workshop on
Command and Control, Monterey, CA, August 1982, pp. 175-179.

[33.1 D. Teneketzis , "The Decentralized Quickest Detection Problem," In proceedings
of the 21st IEEE Conference of Decision and Control, Fort Lauderdale, Fl.. 1982,
pp. 673-679.

[3-4.] SophoclesJ. Orfanidis, Optimum Signal Processing, An Introduction, MacMillan
Publishing Company, 1985, p. 8.

[35.] Tom .M. Apostol, .[athematical Analysis, Addison-Wesley Publishing Company,
* 1974. p. 14.

[36.] David G. Messerschmit, "Quantization for Maximum Output Entropy", IEEE
Trans. on Injor. Theory, Sep. 1971, pp. 612.

a [37.] Gallagar, R.. Information Theory and Reliable Communication, Wiely, 1969.

.[3S.] Y. Bar-Shalom, "Tracking Methods in a Multitarget Environment," IEEE Tran.
"Automat. Conir., vol. AC-23, Aug. 1978, pp. 618-626.

138

A 

"



[39.] D. B. Reid, "An Algorithm for Tracking Multiple Targets," IEEE Trans.
Automat, Contr., vol. AC-24, Dec. 1979, pp. 843-854.

[40.1 Helstrom, C. W., Probability and Stochastic Processes for Engineers, Macmillan
Publishing Company, 1984, pp. 179-181.

[41.] Kassam, S. A., "Optimal Quantization for Signal Detection", IEEE, Trans. on
Communication, vol. COM-25, No. 5,May 1977,pp. 479-484.

[42.] Wood, C. R., "On Optimum Quantization", IEEE Trans. on Information Theory,
vol. IT-15, No.2, March 1969.

[43.1 Velichkin, A. I., "Optimum Characteristics of Quantizers," Telecommunication
Radio Eng. (USSR), vol. 18, Feb. 1963, pp.1 -7 .

[44.] Garmash,V. A., "The Quantization of Signals with Non-uniform Steps,"
Telecommunications, No. 10, pp. 10-12, Oct., 1957.

I

4

I1

."

213

I,



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 62
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. Paul H. Moose, Code 62-Me 5
Naval Postgraduate School
N.onterev. California 93943-5000

5. Prof. John M. Wozencraft , Code 62-me
0 ~6560 Brookdale Dr

Carmel, California 93943
6. Prof. Donald P. Gaver Code 55-Gv

Naval Postgraduate School
Monterey, California 93943-5000

7. Prof. Harriett B. Rigas
Dept. of Electrical Engineering and System Science
Michigan State University
East Lansing, Michigan 18824

8. Prof. Arthur L. Schoenstadt Code 53-Zh
Naval Postgraduate School

.Monterey, California 93943-5000

9. Prof. Charles W. Therrien Code 62-Ti
Naval Postgraduate School
Monterey. California 93943-5000

10. Prof. Daniel C. Bukofzer Code 62-Bh
Naval Postgraduate School
Montercy, California 93943-5000

11. Prof. Roberto Cristi Code 62-Cx I
Naval Postgraduate School
Monterey, California 93943-5000

F1.4

.".4 . ... . . - , - , ". ,'.' . -.-. -. . '.



12. Prof. Louis L. Scharf
Dept. of Electrical and Computer Engineering
Universitv of Colorado
Boulder. CO 80309

12. Prof. Richard A. McGonigal Code 0305
Naval Postgraduiate School
Monterey, California 93943-S000

14. Prof. Donald Trahan Code 53-Tn
Nav-al Postcraduate School
Monterey, California 939,43-5000

1I Prof. Richard Franik- Code 53-Fe
A Naval Postgraduate School

Montcrey. California 93943-5(00

16. Prof Carroll \Wilde Code 53-WVi
Naval Postaraduate School
Monterev. California 939-43-5000L 17. Mr. Larn- Frazier code 0141
Naval Postcraduate School

* Monterev. California 93943-5000
I8. Prof. Emad K. AI-Hussaini

EE Dept., Faculty of Engineering
P.O. 155--51. UAE University. Al-Amn
United Arab Eirates

19. Prof. Abdel-N-ahaab Fayez
Faculty of Engineering, Cairo University
Giza, Egyvpt

20. Prof. P. K. Varshney
Electrical and Computer Engineering Department
111 Link Hall. Syracuse UniversitV
Syracuse, NY 13 210

21. Dr. Dave Harris L-205
Lawrence Livermore NTL Laboratory
P.O. Box 808
Livermore, CA 94550

22. Chief, Research and Advancement Authority
Egyptian Armed Forces Headquarters
Nasr City, Cairo, Egypt

23. Chief, Armament Authority
Armament Authority of Egyptian Armed Forces
Koprey El-qubaa, Cairo, Egypt

141



V 24. Chief, Training Authority
V Egyptian Armed Forces Headquarters

Nasr City, Cairo, Egypt

25. Director, Signal Corps
Egyptian Armed Forces Headquarters
Nasr City, Cairo, Egypt

26. Library, Military Technical College
Koprey EI-qubaa
Cairo, Egypt

27. Library, Faculty of Engineering
Cairo University
Giza, Egypt

2S. Lieutenant Sarfraz Hussain
1577'18 Samnabad
Karachi, Pakistan

29. Mr. Seah Moon Ming
Blk. IF, Gillman Heights 10-51
Republic of Singapore

30. Brigadier General Magdy G. EI-Sheimy
317, King Faesal St., Madkor Station, Pyramid

"- -: Giza, Egypt

31. Colonel Salah M. El-MYagraby
Building 3S, Apt. 21. Tawfeck City.
Nasr City, Cairo, Egypt

32. Colonel Abdcl-Monicm E. Doma 1
45, Ibraheim Abdel-Razik St.
Ein Shams, Cairo, Egypt

33. Colonel Mohamed M. Abdel-Moniem
45. Ibraheim Abdel-Razik St.
Ein Shams, Cairo, Egypt

34. Colonel Ismaeel A. A1-Getani
52, Bochary St.. Enterance 2, Apt. 5
The New, 7(th) Area

. .-.. Nasr City, Cairo, Egypt

35. Colonel Refat M. E1-Hefnv
23, High Industrial Institute St.
Ein Shams (east), Cairo, Egypt

36. Colonel Abdel Aziz M. AI-Bassiouni 5
I Hamazeen St.
Kafrel Zaiat, Egypt

142



I
S

It'

-4'

'4,

'S

S
i

'.4

4.-
pp..

I.~p

'Pd.

V.

A

*t 6 S 0 0 0 0 0 0 0 S S S S 0 S S
- * ~

* S - 'S ;: ~~~'*'-~*


